
- •Основные элементарные функции
- •Бесконечно малая величина
- •6) Свойства бесконечно малых
- •Способы определения
- •Свойства
- •Предел функции по Коши
- •Окрестностное определение по Коши
- •Точки разрыва
- •17) Правила дифференцирования
- •Свойства дифференциала аналогичны свойствам производной.
- •Дифференцируемость функций. Непрерывность дифференцируемой функции
- •24,25,26,27) Разложение некоторых элементарных функций по формуле Маклонена
- •30) Достаточные условия существования локальных экстремумов
- •Выпуклость функции и точки перегиба
- •32) Асимптоты графика функции
- •Предел функции, правило Лопиталя.
- •Общая схема исследования функции и построения ее графика
- •Свойства первообразной
- •38) Непосредственное интегрирование
Точки разрыва
Если попытаться построить отрицание свойства непрерывности функции в точке (предельной для области определения), то получится следующее. Существует такая окрестность значения функции в рассматриваемой точке, что сколь близко мы не подходили бы к данной точке, всегда можно будет найти точку, значение в которой окажется за пределами заданной окрестности.
В этом случае говорят, что функция f терпит разрыв в точке a.
Возможны два варианта:
либо предел функции существует, но он не совпадает со значением функции в данной точке:
тогда
точка a называется точкой
устранимого разрыва функции f (в комплексном
анализе — устранимая
особая точка).
Положив
можно
добиться непрерывности функции в этой
точке. Такое изменение значения функции
в точке, превращающее функцию в непрерывную
в этой точке, называется доопределением
по непрерывности.
либо предела функции в данной точке не существует. В этом случае для числовой функции, заданной на вещественной прямой (или её подмножестве), возможно существование односторонних пределов. Отсюда возникает классификация точек (неустранимого) разрыва:
если оба односторонних предела существуют и конечны, но хотя бы один из них отличен от значения функции в данной точке, то такую точку называют точкой разрыва первого рода;
если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода.
Точка, в которой функция не определена, будет точкой разрыва функции лишь при условии, если функция определена, хотя бы с одной стороны вблизи этой точки.
15) Геометрический и механический смысл производной
Геометрический смысл производной
Пусть
функция
определена
в некоторой окрестности
токи
,
непрерывна в этой точке и
,
а
(рис.2).
Рис. 2
Придав
произвольное приращение аргументу
,
так чтобы
,
перейдем к точке
с
абсциссой
и
ординатой
,
где
Уравнение
прямой, проходящей через точки
и
(секущей
графика функции
,
имеет вид:
,
где отношение
представляет
собой угловой коэффициент секущей (
.
Касательной
к графику функции
в
точке
называется
предельное положение секущей
,
при стремлении точки
по
графику
к
точке
.
Для
того, чтобы секущая
при
стремилась
к предельному положению, отличному от
вертикальной прямой , необходимо и
достаточно, чтобы существовал конечный
предел
,
то есть , чтобы существовала конечная
производная функции
в
точке
.
Угловой коэффициент касательной получается путем перехода от к пределу при :
Таким
образом, получим, что
,
где
-
угол наклона касательной к оси
(см.
рис.), а значение производной равно
угловому коэффициенту касательной к
графику функции. В этом заключается геометрический
смысл производной.
Уравнение касательной к графику
функции
в
точке
имеет
вид
В
случае бесконечной производной
.
Из уравнения секущей имеем:
Переходя
в равенстве к пределу при
,
получаем уравнение касательной к графику
функции в точке
в
виде
,
то есть касательная является в данном
случае вертикальной прямой, проходящей
через точку
оси
абсцисс.
Механический смысл производной
Пусть
материальная точка движется прямолинейно
и
-
длина пути, проходимого за время
,
отсчитываемого от некоторого момента
времени
.
Для
определения скорости
в
данный момент
придадим
переменной
некоторое
приращение
,
при этом приращение пути будет равно
.
Отношение
называется
в физике величиной средней скорости
движения за промежуток времени, начиная
с момента времени
,
и обозначается
Предел
называется
величиной мгновенной скорости движения
в момент времени
.
Таким
образом, мгновенная скорость в момент
времени
прямолинейного
движения, совершаемого по закону
равна
значению производной
.
Примеры задач
Задача
1. Составьте
уравнение общей касательной к графикам
функций
и
.
Решение.
I способ.
Прямая
является
общей касательной графиков функций
и
,
если она касается как одного, так и
другого графиков, но совершенно не
обязательно в одной и той же точке.
-
уравнение касательной к графику функции
y=x2 в
точке с абсциссой x0
-
уравнение касательной к графику функции
y=x3 в
точке с абсциссой x1
Прямые совпадают, если их угловые коэффициенты и свободные члены равны. Отсюда
Решением системы будут
Уравнения общих касательных имеют вид:
16) УРАВНЕНИЯ КАСАТЕЛЬНОЙ И НОРМАЛИ К КРИВОЙ
Рассмотрим кривую, уравнение которой есть y=f(x). Возьмем на этой кривой точку M(x0, y0), и составим уравнение касательной к данной кривой в точке M, предполагая, что эта касательная не параллельна оси Oy.
Уравнение прямой с угловым коэффициентом в общем виде есть у=kx+b. Поскольку для касательной k= f'(x0), то получаем уравнение y= f'(x0)·x + b. Параметр b найдем из условия, что касательная проходит через точку M(x0, y0).Поэтому ее координаты должны удовлетворять уравнению касательной: y0= f'(x0)·x0 + b. Отсюда b=y0– f'(x0)·x0.
Таким образом, получаем уравнение касательной y= f'(x0)·x +y0 – f'(x0)·x0 или
y = f '(x0)·(x – x0) + f(x0) |
Если касательная, проходящая через точку М(x0,y0) параллельна оси ординат (т.е. производная в этой точке не существует), то ее уравнение x= x0.
Наряду с касательной к кривой в данной точке часто приходится рассматривать нормаль.
Нормалью к кривой в данной точке называется прямая, проходящая через эту точку перпендикулярно к касательной в данной точке.
И
з
определения нормали следует, что ее
угловой коэффициент knсвязан
с угловым коэффициентом
касательной k равенством:
.
Учитывая, что нормаль также как и касательная проходит через точкуM(x0, y0), то уравнение нормали к кривой y= f(x) в данной точке M имеет вид:
Ясно, что если касательная параллельна оси Ox, т.е.f'(x0) = 0 и ее уравнение имеет вид y= y0, то нормаль в этой же точке будет перпендикулярна оси Ox. Значит, ее уравнение имеет вид x= x0.
Примеры.
Составить уравнения касательной и нормали к графику функции у = tg2x в точке с абсциссой x0=π/4.
Уравнение касательной имеет вид y =4·(x – π/4) + 1 или y = 4x – π + 1.
Уравнение нормали будет y = –1/4·(x – π/4) + 1 или у = –1/4·x + π/16 + 1.
Составить уравнения касательной и нормали к графику функции у = 0.5·(x – 2)2 + 5 в точке M(2; 5).
y'= x – 2, y'(2) = 0 . Следовательно, касательная параллельна оси Ox, а значит ее уравнение y= 5 . Тогда нормаль параллельна оси Oy и имеет уравнение x= 2 .
Найти уравнение касательной и нормали к эллипсу
в точке M(2; 3).
Найдем y'
по правилу дифференцирования неявной
функции
.
Уравнение
касательной:
,т.е.
.
Уравнение
нормали:
,
т.е.
.
Составить уравнения касательной и нормали к циклоиде x= t – sin t, y= 1 – cos tв точке М(x0; y0), которая соответствует значению параметра t = π/2.
При t=π/2x0= π/2 – 1, y0=1.
.
Уравнение касательной: y = x – π/2 + 1 + 1, т.е. у = x – π/2 + 2.
Уравнение нормали: y = – x – π/2 – 1 + 1, т.е. у = – x – π/2.