
- •21. Производственное освещение. Основные светотехнические величины. Естественное освещение. Нормирование. Расчет.
- •Основные светотехнические величины.
- •Количественные показатели
- •22. Искусственное освещение. Источники света. Светильники. Расчет искусственного освещения.
- •23. Производственная вентиляция. Классификация. Естественная и искусственная вентиляция. Определение необходимого воздухообмена.
- •Определение необходимого воздухообмена
- •24. Метеорологические условия производственных помещений. Терморегуляция. Контроль микроклимата. Нормирование.
- •Микроклимат производственных помещений
- •25. Вредные вещества. Классификация. Особенности воздействия на человека.
- •26. Производственный шум. Основные характеристики. Нормирование. Методы борьбы с шумом.
- •Воздействие шума на организм человека
- •Гигиеническое нормирование шума
- •27. Вибрация. Основные характеристики. Нормирование. Снижение.
- •Нормирование вибраций
- •Методы снижения вибраций
24. Метеорологические условия производственных помещений. Терморегуляция. Контроль микроклимата. Нормирование.
Метеорологические условия, или микроклимат производственных помещений, складываются из температуры воздуха в помещении, инфракрасного и ультрафиолетового излучения от нагретого оборудования, раскаленного металла и других нагретых поверхностей, влажности воздуха и его подвижности. Все эти факторы, или метеорологичеокие условия в целом, определяются двумя основными причинами: внутренними (тепло и влаговыделения) и внешними (метеорологические условия). Первые из них зависят от характера технологического процесса, оборудования и применяемых санитарно-технических устройств и, как правило, носят относительно постоянный характер для каждого цеха или отдельного участка производства; вторые — сезонного характера, резко изменяются в зависимости от времени года. Степень влияния внешних причин во многом зависит от характера и состояния наружных ограждений производственных зданий (стен, кровли, окон, въездных проемов и т. п.), а внутренних — от мощностей и степени изоляции источников выделения тепла, влаги и эффективности санитарнo-технических устройств.
Микроклимат производственных помещений
Тепловой режим производственных помещений определяется количеством тепловыделений внутрь цеха от горячего оборудования, изделий и полуфабрикатов, а также от солнечной радиации, проникающей в цех через открытые и остекленные проемы или нагревающей кровлю и стены здания, а в холодный период года — от степени отдачи тепла за пределы помещения и от отопления. Определенную роль играют тепловыделения от различного рода электродвигателей, которые при работе нагреваются и отдают тепло в окружающее пространство. Часть поступившего в цех тепла отдается наружу через ограждения, а остальное, так называемое явное тепло нагревает воздух рабочих помещений.
Согласно санитарным нормам проектирования промышленных предприятий (СН 245 — 71) производственные помещения по удельному тепловыделению делятся на две группы: холодные цехи, где явное тепловыделение в помещении не превышает 20 ккал/м3ч, и горячие цехи, где они выше этой величины.
Воздух цеха, постепенно соприкасаясь с горячими поверхностями источников тепловыделений, нагревается и поднимается вверх, а его место замещает более тяжелый холодный воздух, который, в свою очередь, также нагревается и поднимается вверх. В результате постоянного движения воздуха в цехе происходит его нагрев не только в месте нахождения источников тепла, но и на более отдаленных участках. Такой путь отдачи тепла в окружающее пространство называется конвекционным. Степень нагрева воздуха измеряется в градусах. Особенно высокая температура наблюдается на рабочих местах, не имеющих достаточного притока наружного воздуха или расположенных в непосредственной близости от источников тепловыделений.
Противоположная картина наблюдается в тех же цехах в холодный период года. Нагретый горячими поверхностями воздух поднимается вверх и частично уходит из цеха через проемы и неплотности в верхней части здания (фонари, окна, шахты); на его место подсасывается холодный наружный воздух, который до соприкосновения с горячими поверхностями нагревается очень мало, в силу чего нередко рабочие места омываются холодным воздухом.
Все нагретые тела со своей поверхности излучают поток лучистой энергии. Характер этого излучения зависит от степени нагрева излучающего тела. При температуре выше 500oС спектр излучения содержит как видимые— световые лучи, так и невидимые — инфракрасные лучи; при меньших температурах этот спектр состоит только из инфракрасных лучей. Гигиеническое значение имеет в основном невидимая часть спектра, то есть инфракрасное, или, как его иногда не совсем правильно называют, тепловое излучение. Чем ниже температура излучаемой поверхности, тем меньше интенсивность излучения и больше длина волны; по мере увеличения температуры увеличивается интенсивность, но уменьшается длина волны, приближаясь к видимой части спектра.
Источники тепла, имеющие температуру 2500 — 3000o С и более, начинают излучать также ультрафиолетовые лучи (вольтова дуга электросварки или электродуговых печей). В промышленности для специальных целей используются так называемые ртутно-кварцевые лампы, которые излучают преимущественно ультрафиолетовые лучи.
Ультрафиолетовые лучи также имеют различные длины волн, но в отличие от инфракрасных по мере увеличения длины волны они приближаются к видимой части спектра. Следовательно, видимые лучи по длине волн находятся между инфракрасными и ультрафиолето. выми.
Инфракрасные лучи, попадая на какое-либо тело, нагревают его, что и послужило поводом называть их тепловыми. Это явление объясняется способностью различных тел в той или иной степени поглощать инфракрасные лучи, если температура облучаемых тел ниже температуры излучающих; при этом лучистая энергия превращается в тепловую, вследствие чего облучаемой поверхности передается то или иное количество тепла. Этот путь передачи тепла называется радиационным. Различные материалы обладают различной степенью поглощения инфракрасных лучей, и, следовательно, при облучении они нагреваются по-разному. Воздух совершенно не поглощает инфракрасные лучи и поэтому не нагревается, или, как принято говорить, он является теплопрозрачным. Блестящие, светлые поверхности (например, алюминиевая фольга, полированные листы жести) отражают до 94 — 95% инфракрасных лучей, а поглощают всего 5 — 6%. Черные матовые поверхности (например, покрытие сажей) поглощают почти 95 — 96% этих лучей, поэтому нагреваются более интенсивно
Терморегуляция организма - это совокупность физических и химических процессов в организме, направленных на поддержание постоянной температуры тела 36-37 оС. СанПиН 2.2.548-96. Гигиенические требования к мклл-ту произв. помещений. Мккл-т определяют следующие параметры: 1. температура окружающего воздуха, °С, 2. Температура пов-тей, °С, (интенсивность радиации в инфракрасной и ультрафиолетовой областях э/м излучения) 3. Скорость движения воздуха, м/с. 4. Относительная влажность, %. 5. интенсивность радиации в инфракрасной и ультрафиолетовой областях спектра электромагнитных излучений (тепловое излучение). Эти факторы по отдельности или в комплексе влияют на организм ч-ка, определяя его самочувствие. Параметры мкк-та должны обеспечивать сохранение теплового баланса ч-ка с ОС и поддержание оптимального или допустимого теплового состояния орг-ма. Метеорологические условия (микроклимат) оказывают большое влияние на процесс теплообмена человека с окружающей средой. Нарушение теплообмена приводит к нарушению терморегуляции организма. Терморегуляция контролируется центральной нервной системой и обеспечивает тепловой баланс организма человека. Как перегрев, так и переохлаждение вызывают ухудшение здоровья и работоспособности человека, могут привести к серьезным последствиям вплоть до смерти человека. Различают физическую и химическую терморегуляцию, однако роль последней невелика. Физическая терморегуляция регулирует отдачу тепла, которая может происходить тремя путями: радиацией - передачей тепла в виде инфракрасного излучения от более нагретого тела менее нагретому; конвекцией - нагревом воздуха, омывающего поверхность тела; испарением пота с поверхности тела. В условиях покоя на долю радиации приходится около 45%, конвекции - 30% и испарения - 25% всего удаляемого организмом тепла. /Данные параметры могут быть оптимальными или допустимыми. Оптимальные величины показателей мккл-та необходимо соблюдать на рабочих местах производственных помещений, на которых выполняются работы операторского типа, связанные с нервно-эмоциональным напряжением. Допустимые параметры МК установлены по критериям допустимого теплового и функционального состояния ч-ка на период 8-часовой рабочей смены. Они не вызывают повреждений или нарушения здоровья ч-ка, не приводят к возникновению теплового дискомфорта, ухудшению самочувствия и снижению работоспособности./
Санитарные нормы микроклимата производственных помещений № 548-96 регламентируют нормы производственного микроклимата. В них определены температура воздуха, его относительная влажность, скорость движения, оптимальные и допустимые величины интенсивности теплового облучения для рабочей зоны с учетом сезона года и тяжести трудовой деятельности.
В производственных помещениях, где невозможно установить допустимые величины микроклимата, необходимо предусматривать мероприятия по защите работающих от возможного перегревания и охлаждения.
Основным путем оздоровления условий труда в горячих цехах является изменение технологического процесса, направленное на ограничение источников тепловыделений и уменьшение времени контакта работающих с нагревающим микроклиматом, а также использование эффективного проветривания, рационализация режима труда и отдыха, питьевого режима, спецодежды.
Наиболее эффективным средством улучшения метеорологических условий является автоматизация и механизация всех процессов, связанных с нагревом изделий.
Значительно уменьшают теплоизлучение и поступление лучистой и конвекционной теплоты в рабочую зону теплоизоляция, отражательные экраны, водяные завесы, вентиляция.
Существенным фактором повышения работоспособности рабочих горячих цехов являются соблюдение обоснованного режима труда и отдыха, сокращенный рабочий день, дополнительные перерывы, комнаты отдыха, гидропроцедуры.
Для личной профилактики перегревания существенное значение имеет рациональный питьевой режим. При больших влагопотерях (более 3,5 кг за смену) и значительном времени облучения инфракрасной радиацией — 50% и более — применяется подсоленная (0,3% NaCl) газированная вода с добавлением солей калия и витаминов. При меньших влагопотерях расход солей восполняется пищей. В южных районах страны в горячих цехах применяются белково-витаминный напиток, зеленый байховый чай с добавлением витаминов и др.
В профилактике перегревов большую роль играют средства индивидуальной защиты (спецодежда из хлопчатобумажных, суконных и штапельных тканей, фибровые, дюралевые каски, войлочные шляпы и др.).
Для предупреждения попадания в производственные помещения холодного воздуха необходимо оборудовать у входа воздушные завесы или тамбуры-шлюзы. Если обогрев здания невозможен, применяют воздушное и лучистое отопление. При работе на открытом воздухе в холодных климатических зонах устраивают перерывы на обогрев в специально оборудованных теплых помещениях. Важную роль играют также спецодежда, обувь, рукавицы (из шерсти, меха, искусственных тканей с теплозащитными свойствами, обогреваемая одежда и др.). Прекращение работ на открытом воздухе при низких температурах производится на основании постановления местных органов исполнительной власти.