- •Вопросы входного контроля
- •1.Закон Ома для участка цепи постоянного тока.
- •2. Закон Ома для замкнутой цепи постоянного тока.
- •3. Закон Ома для участка цепи переменного тока.
- •4. Закон Ома в дифференциальной форме.
- •5. Гармонический электрический сигнал и его характеристики.
- •6. Среднеквадратичное (действующее) значение синусоидального тока.
- •7. Закон Джоуля-Ленца для цепи постоянного и переменного токов.
- •8. Активная, реактивная, комплексная и полная мощность потребителя электрической энергии.
- •9 . Основной закон электростатики (закон Кулона).
- •10. Напряженность электрического поля, понятие силовой линии поля.
- •11. Однородное и неоднородные электрические поля
- •12. Емкость плоского конденсатора
- •13. Связь между напряженностью поля и напряжением заряженного конденсатора.
- •14. Сила, действующая на электрический заряд в электрическом поле.
- •15. Дать определение явления электрического тока и силы тока.
- •16. Что называется напряжением на участке электрической цепи?
- •17. Законы Кирхгофа для электрической цепи.
- •18. Мощность и энергия, потребляемая нагрузкой в цепи постоянного и переменного токов.
- •19. Устройство и принцип действия индукционного счетчика электрической энергии.
- •20.Магнитное поле и его источники.
- •21. Понятие силовой линии магнитного поля.
- •22. Движение заряженной частицы в магнитном поле. Сила Лоренца.
- •23.Сила, действующая на проводник с током в магнитном поле. Правило левой руки.
- •24. Явление электромагнитной индукции. Закон Фарадея.
- •25. Электромагнитные волны, скорость их распространения.
- •26. Внешний фотоэффект, понятие красной границы.
13. Связь между напряженностью поля и напряжением заряженного конденсатора.
Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением
Согласно принципу суперпозиции, напряженность поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин:
Внутри
конденсатора вектора
и
параллельны; поэтому модуль напряженности
суммарного поля равен
Вне пластин вектора и направлены в разные стороны, и поэтому E = 0.
Поверхностная плотность σ заряда пластин равна q / S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:
14. Сила, действующая на электрический заряд в электрическом поле.
Силы электростатического взаимодействия зависят от формы и размеров взаимодействующих тел и характера распределения зарядов на них.
Силы взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению абсолютных значений зарядов и обратно пропорциональна квадрату расстояния между ними:
(Закон
Кулона)
,
где q-заряд,
на который действует сила,Е – напряженность
15. Дать определение явления электрического тока и силы тока.
Электри́ческий ток — упорядоченное нескомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).
Силой тока называется физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.
Сила тока в системе СИ измеряется в Амперах.
По
закону Ома сила тока I для участка цепи
прямо пропорциональна приложенному
напряжению U к участку цепи и обратно
пропорциональна сопротивлению R
проводника этого участка цепи :
16. Что называется напряжением на участке электрической цепи?
Под, напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка.
На рис. 2.5 изображен участок цепи, крайние точки которого обозначены буквами а и b. Пусть ток I течет от точки а к точке b (от более высокого потенциала к более низкому). Следовательно, потенциал точки а(φa) выше потенциала точки b(φb) на значение, равное произведению тока I на сопротивление R: φa = φb + IR.
В соответствии с определением напряжение между точками а и b Uab = φa - φb.
Cледовательно, Uab = IR, т. е. напряжение на сопротивлении равно произведению тока, протекающего по сопротивлению, на значение этого сопротивления.
