
- •Организации по стандартизации в области электросвязи и их вклад в развитие стандартов
- •Плоскости современных телекоммуникаций и их характеристики. Понятие транспортной сети, сети синхронизации и сети управления. Направление развития транспортных технологий.
- •Типы транспортных сетей и их общие характеристики (протяженные сети, сети региона, местные сети, сети города)
- •Модель транспортной сети sdh. Характеристики уровней. Особенности сетей sdh-ngn. Понятие о последовательной и виртуальной сцепке контейнеров.
- •Модель транспортной сети атм. Структуры ячеек атм и их заголовки. Назначение компонент заголовка.
- •Уровни адаптации атм (aal1-all5) и структуры данных сегментов. Функции при поддержке качества передачи информационных данных.
- •Принципы коммутации в атм. Коммутация виртуальных путей и виртуальных каналов. Коммутаторы атм.
- •Модель транспортной сети otn/oth. Структура интерфейсов otn. Структуры циклов oth (opu, odu, otu) и функции их заголовков. Схема мультиплексирования otn/oth.
- •Структура кадра out и функции fec. Преимущество использования fec.
- •Протоколы laps и gfp. Назначение, структуры кадров и места их применения.
- •Модель транспортной сети Ethernet. Структура кадров базовая и для реализации vlan. Назначение заголовков, оценка адресного пространства vlan.
- •Структура кадров pbb/pbt. Назначение заголовков. Компоненты транспортной сети Ethernet (EoT). Преимущества транспортных сетей Ethernet.
- •Основные понятия о транспортной сети ason.
- •Структура оборудования транспортной сети. Виды сетевых элементов оптической транспортной сети и их характеристики.
- •Архитектуры (структуры) оптических транспортных сетей и их характеристики. Секции мультиплексирования, секции передачи, тракты, каналы.
- •Защита секции мультиплексирования в кольцевой сети
- •Защита соединения тракта
- •Интерфейсы оборудования транспортных сетей и их характеристики (агрегатные, компонентные, синхронизации, управления, электрические, оптические).
- •Пути решения проблем синхронизации. Понятие джиттера и вандера. Причины образования джиттера и вандера. Способ уменьшения джиттера (схема с эластичной памятью).
- •Иерархия источников синхронизации. Пэи и пэг, взг, гсэ. Характеристики стабильности. Синхросигналы. Аппаратура распределения синхросигналов.
- •Режимы работы тсс. Распределение синхронизма в цифровых сетях связи. Классы подключения к базовой сети тсс. Правила проектирования тсс.
- •Назначение показателей качества и приоритетов при проектировании
- •Понятие о аудите тсс. Назначение аудита, порядок проведения аудита.
- •Требования по скорости передачи для широкополосного доступа. Определение сети доступа. Базовый прототип сд и назначение его компонентов.
- •Обобщённая модель сети доступа (по рек. G.902)
- •Технологии xDsl в сд (на примере adsl и hdsl). Разделение направлений передачи в 2-х проводных линиях. Спектры линий с adsl.
- •Пассивные оптические сети доступа на примере epon/gepon и gpon.
- •Интерфейсы сетей доступа uni и sni. Назначение, характеристики и применение.
Назначение показателей качества и приоритетов при проектировании
Учитывая, что ВЗГ и ГСЭ имеют несколько входов для внешних синхросигналов, качество которых может быть независимым по происхождению и одинаковым, вводится система приоритетов. Приоритет определяется его номером. Чем меньше номер, тем выше приоритет. Число приоритетов может быть от 0 до 254. Приоритет отмечается в таблице памяти контроллера ВЗГ и ГСЭ.
Первым приоритетом обычно устанавливается сигнал синхронизации, поступающий от ПЭГ по самому короткому и качественному маршруту, где по пути следования синхросигнала установлено как можно меньше промежуточных ВЗГ.
Вторым приоритетом для основного оборудования узла или станции может служить сигнал синхронизации, поступающий от ПЭГ по другому маршруту, чем сигнал первого приоритета.
ВЗГ и ГСЭ могут принимать синхросигналы 3-го и 4-го приоритетов и т.д. Последним из приоритетов в любом оборудовании синхронизации является собственный генератор, работающий в режиме запоминания частоты синхросигнала (holdover) и свободных колебаний (free run). Приоритетом можно запретить использование входа синхронизации!
Таблица 5.1. Значения маркера показателя качества
КИ0 и S1 (двоичный) |
Маркер (десятичный) |
Значение по рек. МСЭ-T |
Стабильность частоты |
Уровень качества |
хххх 0010 |
2 |
ПЭГ (G.811) |
110–11 |
Q1(Q2) |
хххх 0100 |
4 |
ВЗГ (транзит) (G.812) |
110–9 за сутки |
Q2(Q4) |
хххх 1000 |
8 |
ВЗГ (местный) (G.812) |
210–8 за сутки |
Q3(Q8) |
хххх 1011 |
11 |
ГСЭ в режиме holdover (G.813) |
410–6 |
Q4(Q11) |
хххх 0000 |
0 |
Качество неизвестно |
– |
Q5(Q0) |
хххх 1111 |
15 |
Для синхронизации не использовать |
– |
Q6(Q15) |
Синхронизация сетевых элементов (внешняя, агрегатная, компонентная, внутренняя). Особенности синхронизации регенераторов. Линии Т0, Т1, Т2,Т3, Т4. Принципы восстановления синхронизации в сети при повреждении. Функция ретайминга.
Одним из главных требований при организации ТСС является наличие альтернативных источников синхронизма для каждого сетевого элемента. Для выбора источника синхросигнала необходим определенный алгоритм, который должен учитывать структуру ТСС и весь характер распределения сигналов. Для формирования такого алгоритма должен соблюдаться ряд принципов:
при восстановлении синхронизации сети необходимо избегать формирования замкнутых петель, иными словами, ни один из хронирующих источников не должен синхронизироваться своим собственным сигналом (такие петли нестабильны и приводят к уходу частоты тактового генератора от номинального значения);
если тактовый генератор работает в режиме удержания, он не должен служить эталоном для хронирующего источника более высокого уровня качества;
каждый сетевой элемент должен синхронизироваться от хронирующего источника более высокого уровня качества, чем уровень ГСЭ;
число источников должно быть небольшим (ограниченным).
Известно несколько методов восстановления нарушенного тактового синхронизма:
ручное переключение источников синхронизма;
использование системы управления сетью;
использование таблиц приоритетов;
наличие сообщений о статусе синхросигнала.
Ручное переключение источников синхронизма применяется только в узлах, которые имеют собственные высокостабильные тактовые генераторы (не ниже качества С>2). Такое переключение очень длительно, так как требует согласования для принятия решения. Достоинство метода состоит в том, что оператор легко разбирается с общей топологией сети и принимает решение без использования сложного и дорогостоящего программного обеспечения. Недостаток — необходимость установления связи с экспертами сети, длительный временной интервал принятия решения.
Восстановление синхронизма при помощи системы управления представляет собой программу сетевого менеджера. Этот путь автоматизированного решения проблемы исключает человека-оператора из цепи принятия решения, что ускоряет процесс переключения (сокращение с часов до минут). Недостаток метода состоит в высоких затратах на решение целого ряда технических и организационных задач по разработке алгоритмов управления. Метод применим в сетях с распределенными ПЭГ, в которых несколько хронирующих источников располагаются в различных сетевых узлах, и любой из них может взять на себя функции основного.
Методы восстановления синхронизма на основе таблиц приоритетов и сообщений о качестве синхронизма отличаются от выше рассмотренных высоким быстродействием. При использовании этих методов переключения синхросигналов происходят за время менее одной секунды. Быстрое переключение предполагает, что у ГСЭ с невысокой стабильностью (около КГ6) в режиме удержания уход фазы не превысит одной мкс.
Критерии выбора источника синхронизации
выбирается доступный источник синхронизации с наивысшим уровнем качества;
из источников с одинаковым качеством выбирается источник с наивысшим приоритетом;
в направлении обратном направлению синхронизации значение S1 устанавливается в значение Q6.
Метод приоритетных таблиц и метод сообщений о качестве являются мощными средствами для автоматического восстановления синхронизации в сети связи. Они позволяют предотвратить создание замкнутых петель синхронизации и нарушение иерархии уровней качества хронирующих источников. Эти методы применяются, как правило, совместно. Примеры их применения демонстрируются на рис. 5.38, 5.39.
Функции ретайминга