
- •4. Монотонные функции. Обратная функция. Предел функции в точке.
- •12. Дифференциал как главная часть приращения.
- •13. Правила дифференцирования. Производные основных элементарных функций.
- •19. Интегрирование заменой переменных.
- •19 (2). Интегрирование иррациональных функций
- •22.Площадь сектора, заданного в полярных координатах:
- •25. Объём тела вращения
- •26. Площадь поверхности вращения
- •28 Двойной интеграл как оббьем под графиком функции. Двойной интеграл как масса пластины.
- •29.Основные свойства двойного интеграла.
- •32.Формула Грина.
- •31. Криволинейный интеграл 2 рода.
- •33.Поверхностный интеграл первого рода.
- •35. Сферические системы координат. Якобиан сск. Вычисление тройного интеграла в сск
- •36. Поверхностного интеграла 2-го рода
- •37. Стокса формула
- •38. Формул Остроградского-Гаусса
37. Стокса формула
формула преобразования криволинейного интеграла по замкнутому контуру L в поверхностный интеграл по поверхности Σ, ограниченной контуром L. С. ф. имеет вид:
причём направление обхода контура L должно быть согласовано с ориентацией поверхности Σ. В векторной форме С. ф. приобретает вид:
где а = Pi + Qj + Rk, dr — элемент контура L, ds — элемент поверхности Σ, n — единичный вектор внешней нормали к этой поверхности. Физический смысл С. ф. состоит в том, что Циркуляция векторного поля по контуру L равна потоку вихря (См. Вихрь) поля через поверхность Σ.
38. Формул Остроградского-Гаусса
установил связь между потоком вектора и дивергенцией. Теорема, называемая также теоремой Остроградского-Гаусса, гласит: поток вектора
через замкнутую поверхность равен интегралу от дивергенции, взятому по объему, ограниченному данной поверхностью.
Формулу Остроградского можно записать в форме:
Или
Формула широко применяется для преобразования интеграла, взятого по объему, ограниченному поверхностью, в интеграл, взятый по этой поверхности. С помощью формулы бывает удобно также определять поток вектора, не проводя прямых вычислений.