
- •1.2. Роль и значение аэрокосмических методов в географических исследованиях
- •2.1. Воздухоплавание
- •2.2. Авиация
- •2.3. Ракеты
- •2.4. Космические летательные аппараты
- •3.1. Летательные аппараты для воздушной съемки
- •3.2.1. Автоматические космические аппараты
- •.Космические аппараты для полетов к Луне. Для изучения поверхности Луны использовались советские автоматические межпланетные станции (амс) «Зонд» и автоматические лунные станции серии «Луна».
- •3.2.2. Пилотируемые космические аппараты
- •3.2.3. Перспективные космические аппараты
- •Солнечное излучение и его отражение объектами земной поверхности
- •4.2. Собственное излучение Земли
- •4.3. Искусственное излучение
- •4.4. Влияние атмосферы на излучение
- •5. Методы регистрации электромагнитного излучения
- •6. Виды аэрокосмических съёмок
- •6.1. Фотографическая съёмка
- •6.2. Телевизионная съемка
- •6.3. Сканерная съемка
- •6.4. Инфракрасная и инфракрасная тепловая съемки
- •6.5. Радиотепловая съемка
- •6.6. Радиолокационная съемка
- •6.7. Спектрометрическая съемка
- •6.8. Лазерная съемка
- •6.9. Разрешающая способность материалов дистанционных съемок
- •7.1. Центральная проекция снимка
- •7.2. Масштаб снимка
- •7.3. Геометрические искажения снимка, вызванные рельефом местности, его наклоном, кривизной Земли
- •9. Информационные свойства снимков
- •10. Теоретические основы дешифрирования аэрокосмических снимков
- •10.1. Дешифровочные признаки
- •10.1.1. Прямые признаки дешифрирования
- •Количественные характеристики плотности изображени
- •10.1.2. Косвенные дешифровочные признаки
- •10.2. Логическая структура процесса дешифрирования
- •11. Технология и методы дешифрирования снимков
- •11.1. Материалы аэрокосмической съемки
- •11.4. Геоинформационные технологии в аэрокосмических исследованиях
- •13. Аэрокосмический мониторинг
6.7. Спектрометрическая съемка
Этот вид съемки позволяет получать данные о спектральных отражательных свойствах природных объектов. Спектрометрирование может выполняться в видимом и ближнем инфракрасном диапазоне спектра электромагнитного излучения. Для спектрометрической съемки используются специальные приборы, которые называются спектрометрами. В Институте физики НАН Беларуси создана микропроцессорная спектрометрическая система «Скиф», а в НИИ ПФП им. Севченко под руководством доктора физико-математических наук Беляева Б.И. создана бортовая модульная микропроцессорная спектрометрическая система «Гемма», аэрокосмическая интерактивная видеоспектрополяриметрическая система «Гемма-2», а также авиационный аппаратно-программный комплекс ВСК-2, которые и в настоящее время используются для проведения аэрокосмических съемок.
При спектрометрировании местности одновременно ведется ее фотографическая или телевизионная съемка для привязки результатов спектрометрирования. Результаты спектрометрической съемки получаются в виде кривых хода яркости по спектру – регистрограммы, либо сразу на экране электронно-лучевой трубки. Обработка результатов спектрометрических съемок довольно трудоемкий процесс, поэтому ведутся исследования по их автоматизации.
При спектрометрической съемке из космоса существенным препятствием является атмосфера, которая селективно (выборочно) рассеивает солнечную радиацию и ослабляет отраженное земной поверхностью излучение, искажая тем самым полученные данные. Для выявления степени влияния атмосферы одновременно проводятся наземные наблюдения, а также с самолета и с космических летательных аппаратов.
Кроме того, знание отражательных и излучательных свойств различных объектов, позволяет наиболее эффективно подбирать фотоматериалы как для съемок, так и для дешифрирования определенных объектов.
С использование спектрометрической съемки можно решать следующие задачи:
- определение концентрации озона и углекислого газа в атмосфере,наличие нефтяной пленки на водной поверхности;
- изучение снежного покрова и льда;
- определение содержания паров в атмосфере;
- изучение влажности почвогрунтов.
6.8. Лазерная съемка
Создание лазера положило начало разработки различных лазерных систем дистанционного зондирования, которые получили различные названия. Наиболее широкое применение получило название лидар, который состоит из передатчика и приемника.
Лазерное зондирование относится к активным видам съемок, которое может вестись от ультрафиолетового до ближнего инфракрасного диапазона. Ввиду поглощения атмосферой коротких волн, используемых в лидаре, он эффективно работает только при ясном небе.
В настоящее время созданы лидары трех типов: высотомер, который позволяет строить профили; сканирующий лидар, который можно использовать как инструмент для картографирования и третий тип лидара – для спектроскопических исследований и создания карты распределения загрязняющих атмосферу веществ.
Основные области применения лазерной съемки следующие:
- измерение концентрации веществ, содержащихся в атмосфере, связанных с ее загрязнением;
- определение термических, структурных и динамических характеристик атмосферы, океана и подстилающей поверхности;
- обнаружение порогового (критического) содержания различных веществ в атмосфере (углекислого газа, окиси азота и двуокиси серы);
- наблюдение за динамикой шлейфов промышленных выбросов;
- распознавание и выделение в океане зон распространения фитопланктона с целью обнаружения косяков рыб, а так же обнаружение нефтяных пятен.