- •2.Статистические таблицы и графики
- •3.Абсолютные величины
- •4.Относительные величины
- •5.Выборочные наблюдения
- •6.Средние и средневзвеш.Показатели.
- •Формулы для вычислений
- •7.Структурные средние
- •8.Ряды динамики.
- •Формулы для вычислений
- •9.Показатели вариации
- •Формулы для вычислений
- •10.Понятие корреляции
- •11.Индексы в статистике
- •12.Индексный метод
- •13. Понятие системы национальных счетов
- •14. Виды счетов снс
- •15. Демографическая статистика
- •16.Статистика занятости и безработицы
- •18.Статистика рабочего времени
- •20. Статистика доходов и расходов.
- •21.Статистика цен.
10.Понятие корреляции
Корреля́ция (корреляционная зависимость) — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения значений одной или нескольких из этих величин приводят к систематическому изменению значений другой или других величин.
Понятие корреляции является одним из основных понятий теории вероятностей и математической статистики, оно было введено Гальтоном и Пирсоном.
Закон природы или общественного развития может быть представлен описанием совокупности взаимосвязей. Если эти зависимости стохастичны, а анализ осуществляется по выборке из генеральной совокупности, то данная область исследования относится к задачам стохастического исследования зависимостей, которые включают в себя корреляционный, регрессионный, дисперсионный и ковариационный анализы. В данном разделе рассмотрена теснота статистической связи между анализируемыми переменными, т.е. задачи корреляционного анализа.
В качестве измерителей степени тесноты парных связей между количественными переменными используются коэффициент корреляции (или то же самое "коэффициент корреляции Пирсона") и корреляционное отношение.
Пусть при проведении
некоторого опыта наблюдаются две
случайные величины
и
,
причем одно и то же
значение
встречается
раз,
раз,
одна и та же пара чисел (
наблюдается
раз.
Все данные записываются в виде таблицы,
которую называют корреляционной.
Выборочная
ковариация
величин
и
определяется
формулой
где
,
а
,
-
выборочные средние величин
и
.
11.Индексы в статистике
В статистике под индексом понимается относительная величина (показатель), выражающая изменение сложного экономического явления во времени, в пространстве или по сравнению с планом. В связи с этим различают динамические, территориальные индексы, а также индексы выполнения плана.
Многие общественные явления состоят из непосредственно несопоставимых явлений, поэтому основной вопрос – это вопрос сопоставимости сравниваемых явлений.
К какому бы экономическому явлению ни относились индексы, чтобы рассчитать их, необходимо сравнивать различные уровни, которые относятся либо к различным периодам времени, либо к плановому заданию, либо к различным территориям. В связи с этим различают базисный период (период, к которому относится величина, подвергаемая сравнению) и отчетный период (период, к которому относится сравниваемая величина). При исчислении важно правильно выбрать период, принимаемый за базу сравнения.
Индексы могут относиться либо к отдельным элементам сложного экономического явления, либо ко всему явлению в целом.
1. В зависимости от объекта исследования:
индексы объемных (количественных) показателей (индексы физического объема: товарооборота, продукции, потребления)
индексы качественных показателей (индексы цен, себестоимости, заработной плата)
К индексам объемных показателей относятся индексы физического объема: товарооборота, продукции, потребления материальных благ и услуг; а также других показателей, имеющих количественный характер: численности работников, посевных площадей и т.п. К индексам качественных показателей относятся индексы: цен, себестоимости продукции, заработной платы, производительности труда, урожайности и т.п.;
2. По степени охвата элементов совокупности:
индивидуальные индексы (дают сравнительную характеристику отдельных элементов явления)
общие индексы (характеризуют изменение совокупности элементов или всего явления в целом)
3. В зависимости от методологии исчисления общие индексы подразделяются на:
агрегатные (агрегатные индексы являются основной формой индексов и строятся как агрегаты путем взвешивания индексируемого показателя с помощью неизменной величины другого, взаимосвязанного с ним показателя).
средние (являются производными от агрегатных)
4. В зависимости от базы сравнения различают:
базисные (если при исчислении индексов за несколько периодов времени база сравнения остается постоянной)
цепные (если база сравнения постоянно меняется)
