
- •I.Строение и свойства белков
- •1. Белки как особый класс биополимеров: их классификация, биологические функции белков. Аминокислотный состав белков.
- •3. Физико-химические свойства белков: растворимость, ионизация и гидратация. Денатурация и высаливание белков, практическое значение. Обнаружение белков в растворах.
- •4. Альбумины, глобулины плазмы крови: особенности структуры и их свойства, роль в организме.
- •5. Фибриллярные белки и их свойства. Структура и свойства коллагеновых белков.
- •6. Фосфопротеиды, гликопротеиды: химическая природа и биологическая роль.
- •7. Хромопротеиды, их виды и химический состав. Гемоглобин, строение и биологическая роль. Гемоглобинопатии.
- •II. Ферменты и витамины.
- •8. Роль ферментов в метаболизме. Многообразие ферментов. Понятие о классификации ферментов, их номенклатура. Изоферменты. Проферменты.
- •10. Механизм действия ферментов. Образование фермент-субстратных комплексов. Активные центры ферментов, их химическая структура. Роль конфармационных изменений фермента и субстрата при катализе.
- •11. Структура ферментов. Функциональные центры ферментов. Кофакторы ферментов, их классификация и роль в катализе. Связь с витаминами, примеры.
- •12. Активация и ингибирование ферментов. Ингибирование конкурентного и неконкурентного типа. Использование ингибиторов в качестве лекарственных препаратов, в том числе стоматологии.
- •14. Регуляторные ферменты. Аллостерическая модуляция активности ферментов: регуляция активности по принципу отрицательной обратной связи и по принципу активации предшественником.
- •15. Энзимодиагностика и энзимотерапия. Достижения и перспективы развития медицинской энзимологии. Первичные и вторичные энзимопатии, примеры.
- •16. Общая характеристика витаминов, классификация. Гиповитаминозы, авитаминозы, гипервитаминозы, причины их возникновения. Провитамины. Антивитамины.
- •17. Витамины а, д, е, к, их химическая природа и участие в метаболических процессах. Нарушения физиологических функций организма при недостатке этих витаминов, их причины.
- •18. Водорастворимые витамины в1, в2, в3, в5, их участие в метаболических процессах. Нарушение
- •20. Витамин с, его биологическая роль. С-гиповитаминозы: причины развития, нарушение обменных процессов при с-гиповитаминозах. Представление о профилактике и диагностике с-гиповитаминозов.
- •III. Энергетический обмен. Биологическое окисление.
- •21. Питательные вещества как источники энергии и пластического материала для организма. Общая схема катаболизма питательных веществ. Общие и специфические пути катаболизма.
- •25. Цикл трикарбоновых кислот Кребса (цтк). Последовательность реакций, регуляция работы цикла и его биологическая роль. Анаболические функции цтк.
- •26. Главная цепь дыхательных ферментов в митохондриях, ее структурная организация и биологическая роль. Цитохромы, цитохромоксидаза, химическая природа и роль в окислительных процессах.
- •27. Химическая природа дегидрогеназ. Над- и флавин-зависимые дегидрогеназы, их важнейщие субстраты.
- •IV. Обмен и функции углеводов
- •30. Углеводы, их классификация, биологическая роль отдельных классов. Важнейшие углеводы, входящие в состав организма человека.
- •31. Переваривание углеводов в жкт. Всасывание моносахаридов слизистой кишечника и транспорт их кровью. Непереносимость лактозы. Усвоение лактозы и галактозы в печени. Галактоземия, фруктоземия.
- •32. Гликоген, его значение. Биосинтез и «мобилизация» гликогена в печени. Физиологическая роль этих процессов, их регуляция. Амилолитический путь распада гликогена. Гликогенозы.
- •34. Аэробный дихотомический распад глюкозы в тканях, его основные этапы. Биологическое значение. Пентозофосфатный путь распада глюкозы, его биологическая роль.
- •1 Этап. Расщепление глюкозы до пирувата.
- •35. Окислительное декарбоксилирование пировиноградной кислоты. Состав пируватдегидрогеназного комплекса. Роль в этом процессе витаминов в1 и в3.
- •37. Липиды и их классификация. Структура и биологическая роль отдельных классов. Липиды как незаменимые компоненты пищи, норма суточного потребления.
- •38. Глицеринсодержащие липиды тканей организма. Их виды, химическая структура, значение для организма. Особенности метаболизма глицерофосфолипидов в тканях.
- •39. Химическое строение и биологическая роль клеточных мембран. Биологические мембраны
- •40. Липиды пищи человека. Переваривание липидов в жкт. Всасывание продуктов расщепления в стенку кишечника. Ресинтез триглицеридов в кишечной стенке. Транспорт экзогенных липидов к органам и тканям.
- •Ресинтез триацилглицеринов в стенке кишечника
- •41. Депонирование и мобилизация жиров в жировой ткани, физиологическое значение и регуляция. Транспорт и основные направления использования вжк в организме.
- •43) Биосинтез и окисление кетоновых тел, биологическая роль этих процессов. Диагностическое значение их определения.
- •44) Обмен и функции холестерола в организме. Биосинтез холестерола, последовательность реакций до образования мевалоновой кислоты. Представление о дальнейших этапах синтеза, регуляция процесса.
- •45) Транспортные липопротеиды крови: особенности строения, состава, функций липопротеидов разных классов. Изменения соотношения липопротеидов при атеросклерозе.
- •46) Биосинтез жирных кислот в клетках эукариот, биологическая роль. Представление о работе пальмитоатсинтетазы.
- •VI. Обмен простых белков и аминокислот
- •49. Дезаминирование аминокислот. Прямое окислительное дезаминирование аминокислот. Трансдезаминирование. Судьба безазотистого остатка аминокислот. Кетогенные и глюкогенные аминокислоты.
- •50. Декарбоксилирование аминокислот. Биогенные амины, их физиологическое значение. Инактивация биогенных аминов. Нарушения обмена биогенных аминов при патологических состояниях.
- •51. Токсичность аммиака. Пути обезвреживания аммиака в организме. Биосинтез мочевины: последовательность реакций, суммарное уравнение. Нарушение процессов обезвреживания. Гипераммониемии.
- •53. Представление о биосинтезе пиримидиновых нуклеотидов: происхождение атомов пиримидинового кольца. Регуляция биосинтеза. Катаболизм пиримидиновых нуклеотидов.
- •55. Первичная, вторичная и третичная структура днк. Роль ядерных белков в компактизации днк. Биологическая роль днк.
- •56. Репликация днк, биологическая роль процесса. Механизм репликации. Роль ферментов и белков, не обладающих каталитической активностью в механизме репликации.
- •57. Рнк: строение, биологическая роль различных классов, локализация в клетке. Особенности строения иРнк и тРнк.
- •58. Биосинтез рнк в тканях. Представление о посттранскрипционном процессинге рнк. Биологическая роль транскрипции.
- •59. Современные представления о синтезе белка: синтез аминоацил-тРнк, представление о синтезе полипептидных цепей на рибосомах. Посттрансляционныый процессинг белковых молекул.
- •60. Метаболизм как интегрированная система метаболических путей. Уровни взаимосвязи. Система центральных метаболических путей, ее биологическая роль.
- •61. Ацетил-КоА как один из ключевых метаболитов клетки. Пути его образования и использования.
- •62. Гормоны, общая характеристика, химическая природа. Механизм действия гормонов белковой природы с цАмф в качестве «второго вестника».
- •63. Гомоны стероидной природы, их функции в организме. Механизм действия стероидных гормонов.
- •64. Гормоны передней доли гипофиза. Химическая природа гомонов, их регуляторные эффекты.
- •65. Гормоны щитовидной железы. Общие представления о химической структуре, биосинтезе, влиянии на обмен веществ. Гипо- и гипертиреозы. Причины их возникновения.
- •66. Гормоны коркового слоя надпочечников: глюкокортикоиды, минералокортикоиды. Общие представления о химической структуре, биосинтезе, влиянии на обменные процессы.
- •67. Гормоны поджелудочной железы: инсулин, глюкагон. Их химическая природа и влияние на обменные процессы.
- •68. Адреналин, норадреналин. Из образование и влияние на обмен веществ.
- •69. Функции и обмен кальция в организме человека. Содержание кальция в крови, гипо- и гиперфосфатемии.
- •70. Функции и обмен фосфора в организме. Содержание фосфора в крови, гипо- и гиперфосфатемии.
- •71. Гормональная регуляция фосфорно-кальциевого обмена. Роль паратгормона, кальцитонина и кальцитриола.
- •73. Соотношение воды, орган ……
- •74. Особенности аминокислотного состава эластина и структурной организации эластических волокон. Общее представление об обмене эластина. Специфические маркеры деградации эластина.
- •75. Гликозаминогликаны и гликозаминопротеогликаны соединительной ткани. Их структура и выполняемые функции, особенности метаболизма. Химическая структура и роль фибронектина.
- •76. Химический состав кости. Белки кости, их роль в минерализации.
- •77. Кальций, фосфор, фтор, стронций и др. Микроэлементы. Их роль в обмене зуба и кости.
- •78. Теории минерализации кости и зуба. Роль Са-связывающих белков, фосфатов и лимонной кислоты в минерализации.
- •80. Органические и минеральные компоненты эмали зуба. Особенности обменных процессов органического и минерального компонентов эмали зуба.
- •81. Проницаемость эмали зуба, факторы на нее влияющие. Созревание эмали.
- •82. Дентин – основной по массе компонент зуба, его химический состав. Характеристика минеральных и органических компонентов дентина. Химический состав дентиновой жидкости.
- •83. Особенности химического состава и обменных процессов цемента. Клеточный и бесклеточный цемент. Характеристика органических и минеральных компонентов цемента.
- •84. Пульпа зуба как вариант рыхлой соединительной ткани. Химический состав и роль пульпы в обмене твердых тканей зуба.
- •85. Влияние питания на состояние зубов. Роль белков, микроэлементов и витаминов. Роль рафинированных углеводов пищи в деминерализации эмали.
- •86. Влияние витаминов на состояние и обмен тканей полости рта и зуба.
- •87. Витамины группы д. 7-дегидрохолестерин как провитамин д. Химическая структура, недостаточность, роль витамина д в процессах минерализации.
- •89. Физико-химические параметры слюны: плотность, вязкость, осмотическое давление, буферная емкость, рН, поверхностное натяжение, их функциональное значение.
- •91. Химический состав ротовой жидкости. Характеристика и роль ферментов слюны.
- •94. Десневая (гингивальная) жидкость, ее химический состав и роль. Белки и ферменты десневой жидкости в норме и при патологии. Изменение состава десневой жидкости при пародонте.
- •95. Влияние характера питания, особенностей химического состава слюны и твердых тканей зуба на состояние зубов и развитие кариеса. Биохимические аспекты профилактики кариеса.
- •V. Медицинская биохимия.
- •97. Остаточный азот крови, его основные компоненты. Азотемии, причины их возникновения. Значение биохимических методов исследования в установлении причины развития азотемии.
- •98. Образование желчных пигментов. Значение определения желчных пигментов для диагностики болезней печени, желчевыводящих путей и крови.
- •99. Ферменты плазмы крови. Диагностическое значение определения активности аминотрансфераз, изоферментов лактатдегидрогеназы, креатинкиназы в сыворотке крови при инфаркте миокарда и болезнях печени.
- •100. Нормальное содержание глюкозы в крови. Гипо- и гиперглюкоземии, их основные причины. Сахарные кривые (проба на толерантность к глюкозе), диагностическое значение определения.
- •102 . Патологические составные части мочи, их происхождение. Методы обнаружения в моче глюкозы, белка, ацетоновых тел, кровяных и желчных пигментов.
66. Гормоны коркового слоя надпочечников: глюкокортикоиды, минералокортикоиды. Общие представления о химической структуре, биосинтезе, влиянии на обменные процессы.
Кора надпочечников выделяетдва основных класса стероидных гормонов в соответствии с их преобладающими регуляторными эффектами : глюкокортикоиды, минералокортикоиды. Основным глюкокортикоидом человека является кортизол: за сутки в надпочечниках синтезируется 1030 мг кортизола и 24 мг другого глюкокортикоида кортикостерона. Гормоны коры надпочечников, в особенности глюкокортикоиды, играют важную роль в адаптации к сильным стрессам
Глюкокортикоиды(кортикостерон, кортизон, гидрокортизон,11-дезоксикортизон). Минералокортикоиды (дезоксикортикостерон и альдостерон).
Основной путь биосинтеза кортикостероидов включает последовательное ферментативное превращение холестерина в прегнеолон, 17-оксипрегнеолон, 21-оксипрегнеолон и прогестерон. Ферменты осуществляют три последовательные реакции гидроксилирования и реакцию отщепления боковой цепи холестерина.
Первым этапом синтеза кортизола, как и других кортикостероидов, является укорочение боковой цепи холестерола при С17 с отщеплением углеродного фрагмента и образованием прегненолона. Это превращение холестерола катализируется митохондриальным ферментом цитохромом Р450 , отщепляющим боковую цепь (Р450обц), иначе этот фермент часто именуется десмолазой холестерола. Активность этого фермента стимулируется АКТГ.В качестве окислителя в гидроксилазных реакция используется О2 , косубстратом служит НАДФН+Н+. Превращение холестерола в прегненолон происходит в митохондриях, переход прегненолона в 11дезоксикортизол в эндоплазматическом ретикулуме и, наконец, переход 11дезоксикортизола в кортизол вновь осуществляется в митохондриях.
Стероидные гормоны практически не накапливаются в клетках коры надпочечников и секретируются в кровь по мере их синтеза.
Глюкокортикоиды оказывают разностороннее влияние на обмен веществ в разных тканях. Проявляют катаболическое действие и выхывают снижение проницаемости клеточных мембран и соответственно торможение поглощения глюкозы и аминокислот. Конечным итогом действия глюкокортикоидов является развитием гипергликемии, обусловленным глюконеогенезоми и снижением синтеза гликогена в мышцах, торможение окисления глюкозы в тканях и усиление распада жиров.
Минералокортикоиды главным образом регулируют содержание солей натрия, калия , хлора и воды. Они способствуют удержанию ионов натрия и хлора и выведению смочой ионов калия.
67. Гормоны поджелудочной железы: инсулин, глюкагон. Их химическая природа и влияние на обменные процессы.
Глюкагон представляет собой гормон полипептидной природы, выделяемый a-клетками поджелудочной железы
В состав полипептидной цепи глюкагона входит 29 аминокислотных остатков.Основным местом синтеза глюкагона являются a-клетки поджелудочной железы, однако довольно большие количества этого гормона образуются и в других органах желудочнокишечного тракта.
Синтезируется глюкагон на рибосомах aклеток в виде более длинного предшественника. В ходе процессинга происходит существенное укорочение полипептидной цепи,после чего глюкагон секретируется в кровь. В крови он находится в свободной форме. Период его полужизни равняется примерно 5 минутам. Основная часть глюкагона инактивируется в печени путем гидролитического отщепления 2 аминокислотных остатков с Nконца молекулы.
Рецепторы для гормона локализованы в наружной клеточной мембране. Образование гормонрецепторных комплексов сопровождается активацией аденилатциклазы и увеличением в клетках концентрации цАМФ, сопровождающимся активацией протеинкиназы и фосфорилированием белков с изменением функциональной активности последних.
Под действием глюкагона в гепатоцитах ускоряется мобилизация гликогена с выходом глюкозы в кровь. Следует заметить, что глюкагон, в отличие от адреналина, не оказывает влияния на скорость гликогенолиза в мышцах.Глюкагон активирует процесс глюконеогенеза в гепатоцитах. Глюкагон стимулирует липолиз в липоцитах, увеличивая тем самым поступление в кровь глицерола и высших жирных кислот. В печени гормон тормозит синтез жирных кислот и холестерола из ацетилКоА. Таким образом, глюкагон стимулирует кетогенез. В почках глюкагон увеличивает клубочковую фильтрацию.
Инсулин относится к гормонам белковой природы. Он синтезируется b-клетками поджелудочной железы. Инсулин является одним из важнейших анаболических гормонов. Связывание инсулина с клетками-мишенями приводит к процессам, которые увеличивают скорость синтеза белка, а также накопление в клетках гликогена и липидов, являющихся резервом пластического и энергетического материала.
Молекула инсулина состоит из двух полипептидных цепей А-цепи и В-цепи. В состав А-цепи входит 21 аминокислотный остаток, в состав В-цепи 30. Эти цепи связаны между собой двумя дисульфидными мостиками: один между А7 и В7, второй между А20 и В19. Третий дисульфидный мостик находится в цепи А, связывая А6 и А11..
Синтез инсулина в b-клетках поджелудочной железы начинается в шероховатом эндоплазматическом ретикулууме, причем на рибосомах образуется молекула предшественника препроинсулина, имеющего в своем составе 104 аминокислотных остатка. Затем в цистернах этой органеллы с Nконца отщепляется членная лидерная последовательность и образуется проинсулин с молекулярной массой 9 000, содержащий 81 аминокислотных остатков. В составе проинсулина происходит формирование всех дисульфидных мостиков будущей молекулы инсулина. Проинсулин поступает в аппарат Гольджи, в котором под действием двух различных протеиназ из средней части молекулы проинсулина отщепляется С-пептид и 4 дополнительных аминокислотных.
Сформированные молекулы инсулина вместе со свободными молекулами Спептида упаковываются в гранулы. В составе гранул молекулы инсулина образуют кристаллические структуры, в которых на каждые 6 молекул инсулина приходится 2 атома цинка
Инсулин переносится кровью в свободном виде, причем биологической активностью обладает только мономер. Спептид, также оказывающийся в русле крови, биологической активностью не обладает. Продолжительность периода «полужизни» молекул инсулина составляет 35 минут, его концентрация в сывортке 0,0290,18 нМ/л
Влияние инсулина на обмен углеводов можно охарактеризовать следующими эффектами:
1.Инсулин увеличивает проницаемость клеточных мембран для глюкозы в так называемых инсулинзависимых тканях за счет увеличения количества белкапереносчика в мембранах клеток. В 2.Инсулин активирует окислительный распад глюкозы в клетках за счет повышения активности ряда ферментов, таких как глюкокиназа, фосфофруктокиназа, пируваткиназа и др.
3.Инсулин ингибирует распад гликогена и активирует его синтез в гепатоцитах.
4.Инсулин стимулирует превращение глюкозы в резервные триглицериды.
5.Инсулин ингибирует глюконеогенез.
Инсулин оказывает анаболическое действие на обмен белков. Инсулин стимулирует пролиферацию и рост многих клеток, однако биохимические механизмы, лежащие в основе этих эффектов, не выяснены, возможно, этот эффект связан с анаболическим действием гормона.