
- •12. Решение прямой задачи гравиразведки на примере однородного шара.Стр64-66
- •13. Решение обратной задачи гравиразведки на примере однородного шара.
- •14. Решение прямой задачи гравиразведки для контактной поверхности.Стр 76
- •15. Плотность горных пород, как фактор, определяющий аномалии силы тяжести.Стр 26-28
- •16.Принцип устройства гравиметра.Стр 34-38
- •17. Силы магнитного взаимодействия, потенциал и напряженность магнитного поля.Стр
- •Классификация методов электроразведки.Стр163-166
- •2. Поле 2-х разнополярных источников постоянного тока.Стр 142-143
- •3. Измерение уд эл сопротивления 4-х электродной установкой.Стр176
- •4. Понятие о кажущемся сопротивлении для неоднородной среды.Стр211
- •5. Удельное и кажущееся эл-е сопротивления.Стр159-160,175
- •6. Распределение плотности тока с глубиной. Идея вэз.Стр143-144
- •7. Вертикальное и дипольное эл-е зондирования.Стр175
- •8. Геоэлектрический разрез, эквивалентность кривых вэз.Стр162-163, 190
- •10.Электрическое профилирование.Стр202-206
- •12. Продольная проводимость и поперечное сопротивление слоистого разреза.Стр12
- •13. Задачи, решаемые электроразведкой постоянным током.
- •15. Классификация эл-магнитных методов электроразведки.
- •16. Магнитотеллурические методы ( мтз и мтп).Стр211-213
- •17. Интерпретация данных мтз, мтп, тт.Стр 217-220
- •18. Метод теллурических токов (мтт).Стр213-214
- •19. Идея частотного зондирования и решаемые им задачи.Стр178-179
- •21. Задачи, решаемые электроразведкой переменными эл-магнитными полями.Стр 221
- •22. Геологические задачи, решаемые электроразведкой.Стр 206-207
- •1.Связь между упругими напряжениями и деформациями.Стр224-232
- •2. Волновое уравнение, продольные, поперечные волны, скорости их распространения.Стр233-240, 242-243
- •3. Поле времен сейсмической волны, изохронны, лучи. Основное уравнение поля времен (ур-е Эйконала)стр284-286
- •4. Принципы Гюйгенса-Френеля и Ферма стр289-291.
- •5. Истинная и кажущая скорости распространения сейсм-х волн, связь м/у ними.
- •6. Отражение и прохождение сейсмических волн, монотипные и обменные волны.
- •7. Коэффициенты отражения и прохождения. Условия образования отраженных и преломленных (головных) волн.
- •9. Частотный диапазон сейсмических волн. Классификация методов по частотному диапазону.Стр313-314
- •10. Принцип устройства сейсм-й аппаратуры, сейсм-й канал, частотный и динамический диапазоны.Стр313-314
- •11. Отраженная волна от плоской наклонной границы на сейсмограмме опв.
- •12. Отраженная волна на сейсмограмме ост.
- •13. Понятие о многократных сейсмических волнах. Кратная волна на сейсмограммах ост и опв.Стр 308-310
- •14. Понятие о дифрагированных волнах. Дифрагированная волна на сейсмограммах ост и опв.
- •15. Скорость ост, статические и кинематические поправки в трассы сейсмограмм ост. Временные сейсмические разрезы.
- •18. Для чего нужна сейсмическая миграция. Понятие о миграции Кирхгофа.
- •19. 3Д сейсморазведка, чем она лучше 2д?
- •20. Яркие пятна, как качественный способ сейсмической инверсии.505-507
- •21. Пак, как способ ограниченной по частотному диапазону инверсии.Стр500-504
- •22. Понятие об упругой инверсии, avo анализ.
- •23. Уравнение годографа преломленной (головной) волны от наклонной границы, покрытой однородной средой.Стр345-348
- •24. Метод всп и решаемые им задачи.Стр423-425
- •25. Геологические задачи и области применения сейсморазведки.
22. Геологические задачи, решаемые электроразведкой.Стр 206-207
Электрическая разведка включает значительно большее разнообразие методов, чем любая другая полевая геофизическая разведка. Большую роль электроразведка играет не только при поисках и разведке нефтяных и газовых месторождений, но и при поисках и разведке рудных месторождений. Большое значение электроразведка имеет также при инженерно-геологических и гидрогеологических исследованиях. При поисках и разведке Н и Г электроразведку используют с целью изучения структурных условий залегания интересующих горизонтов осадочных пород, с которыми связаны залежи нефти и газа. В комплексе с другими полевыми геофизическими разведками электроразведка находит применение и как прямой геофизический метод выявления в разрезе нефтегазовых залежей.
1.Связь между упругими напряжениями и деформациями.Стр224-232
Под напряжением принимается равнодействующая сил, отнесенная к единице площади:
p=(∑Fi)/S
Единица измерения в СИ кг*м -1*с-2
Абсолютно упругим телом называется такое, которое после прекращения действия приложенных к нему сил восстанавливает свою первоначальную форму и объем. Напряжения (силы, действующие на единицу площади), как и деформации, могут быть растягивающими или стягивающими, сдвиговыми или всесторонне сжимающими. Коэффициенты связи между напряжениями и деформациями среды называются модулями упругости. По закону Гука деформация растяжения (сжатия) в идеально упругих средах прямо пропорциональна напряжению. Уравнения связи для однородной изотропной среды:
Коэффициенты пропорциональности λ и µ, называются упругими константами среды. Их можно выразить через модуль Юнга Е и коэф-т Пуассона v:
Модулем
Юнга наз-ся коэф-т, который характеризует
сопротивление ГП расширению или сжатию.
Коэффициент Пуасона равен отношению
относительного поперечного сужения
(расширения) к относительному продольному
удлинению (сжатию) грани. Коэффициент
µ, называемый модулем сдвига, характеризует
сопротивление горной породы изменению
формы. Упругие модули связаны между
собой
Существует
еще один модуль упругости - модуль
всестороннего сжатия К=Е/3(1-2v).
Коэффициент λ-коэффициент между
нормальными напряжениями и деформациями
сжатия-растяжения.
2. Волновое уравнение, продольные, поперечные волны, скорости их распространения.Стр233-240, 242-243
Уравнения движения связывают вторую пространственную производную напряжения со второй производной по времени от смещения частиц. Для однородной изотропной среды эта связь представлена в виде:
В общем случае в упругой среде независимо распространяются упругие колебания 2-х типов: в виде передачи деформаций первого рода – продольная сейсмическая волна Р(prima), и в виде передачи деформации второго рода – поперечная сейсмическая волна S(second). Продольные и поперечные волны распространяются по всему объему упругой среды, поэтому они называются объемными волнами. Продольная волна характеризуется безвихревым смещением частиц среды. Поперечная волна характеризуется отсутствием изменений объема. В жидких и газообразных средах поперечных волн не существует, т.к. отсутствие сцепления частиц не обеспечивает передачу сдвиговых деформаций. В отличие от продольных волн поперечные волны имеют свойство быть поляризованными в различных плоскостях. Если смещение частиц в процессе распространения волны происходит в одной плоскости , то такая волна называется линейно-поляризованной. Продольная волна всегда распространяется быстрее, чем поперечная в той же среде.
Скорости распространения соответственно равны
Т.к.
,то
продольные волны всегда распространяются
с большей скоростью, чем поперечные.
Характер деформации элементов среды при прохождении поперечной волны
Характер деформации элементов среды при прохождении продольной волны