Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
horoshaya_shtuka.docx
Скачиваний:
1
Добавлен:
22.04.2019
Размер:
331.54 Кб
Скачать

Непрерывные функции Определения

Определение 1. Функция f(x) называется непрерывной в точке x0, если .

Дадим несколько расшифровок этого важнейшего определения.

а) Вспоминая понятие предела, запишем непрерывность f(x) в точке х0 в виде

б) Так как х0=lim x, то непрерывность в точке х0 можно записать в виде

Отсюда следует важнейшее свойство непрерывной функции: для непрерывной функции можно переставлять местами знак функции и знак предельного перехода

в) Обозначим x=x-x0 (приращение аргумента) и f=f(x)-f(x0) (приращение функции). Тогда непрерывность в точке х0 означает, что , т.е. бесконечно-малому приращению аргумента соответствует бесконечно-малое приращение функции.

Введем обозначения:

если эти пределы существуют.

Определение 2. Функция f(x) называется непрерывной в точке х0 слева (справа) если f(x0)=f(x0 – 0) (f(x0)=f(x0+0)). Очевидно,что непрерывность в точке х0 означает непрерывность слева и справа одновременно.

Определение 3. Функция f(x) называется непрерывной на некотором множестве Х, если она непрерывна в каждой точке этого множества, т.е. если

Обратите внимание, где стоит квантор , это важно.

Определение. Если функция f(x) не является непрерывной в точке х0, то говорят, что в точке х0 функция f(x) имеет разрыв.

Типы разрывов

А. Пусть существуют конечные f(x0-0) и f(x0+0), но они не равны друг другу . Тогда говорят, что в точке х0функция f(x) имеет разрыв I рода или скачек.

График функции f(x) в окрестности точки х0 имеет в этом случае примерно такой вид:

Величина |f(x0+0)-f(x0-0)| называется величиной скачка функции f(x) в точке х0.

Б. Если хотя бы один из пределов бесконечен или не существует, то говорят, что в точке х0 функция f(x) имеет разрыв второго рода.

Виды графика функции f(x) в окрестности точки х0 в этом случае гораздо разнообразнее. Некоторые возможные варианты приведены ниже.

Свойства непрерывных функций. Непрерывность сложной функции

Теорема 1. Пусть функции f(x) и g(x) непрерывны в точке х0. Тогда функция f(x) не равная g(x), f(x)g(x) и (если g(x) не равно 0) непрерывны в точке x0.

Доказательство.

Пусть f(x) и g(x) непрерывны в точке x0. Это значит, что . Но тогда, по свойствам пределов

Последнее свойство верно, если . 

Пусть y=f(x), но x, в свою очередь, является функцией некоторого аргумента t: x=(t). Тогда комбинация y=f((t)) называется сложной функцией, или суперпозицией функции (t).

Примеры:

а) y=sin(x), x=et => y=sin(et)

б) y= ex , x=sin(t) => y= esin(t)

 

Теорема о непрерывности сложной функции.

Пусть функция (t) непрерывна в точке t0 и функция f(x) непрерывна в точке х0=(t0). Тогда функция f((t)) непрерывна в точке t0.

Доказательство.

Для доказательства этой теоремы воспользуемся формальным преобразованием двух строчек кванторов. Имеем

Выписывая подчеркнутые кванторы, получим, что

,

что и говорит о том, что f((t)) непрерывна в точке t0. 

Обратите внимание на следующие детали:

а) т.к. x=(t), то |(t)-(t0)|< может быть записано как |x-x0|<, и f(x) превращается в F((t));

б) при определении непрерывности (t) в точке t0 в первом кванторе стоит буква . Это необходимо для согласования с квантором в предыдущей строке и взаимного уничтожения . Любая другая буква на этом месте не дала бы верного результата.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]