
Вопрос 10.
Понятие минора и алгебраического дополнения.
Пусть задан опред.d
Выберем
произвольное число k,
удовлетвор условию 1
В определителе зафиксируем произвольные k строки столбцов и на пересечении выбранных k строк и k столбцов стоит эл.,кот.образуют матрицу порядка k. Опред.этой матрицы – минор порядка опред.d и обозначается Мk.
Минор kтого – опред., полученных из d после вычеркивания n-k строк и n-k столбцов. Если в опред. удалить 1строчку и 1столбец, то получится минор порядка n-k, каждый эл.опред.есть минор первого порядка.
Пусть в опред.порядка n взят минор порядка k. Если из опред.удалить те строки и столбцы, где располагается выбранный минор, получим доп.минор порядка n-k, кот.называется доп.минор – М’(n-k).
М и М’ – взаимодополнительные миноры.
Если взять любой эл.опред.//aij и удалить iстроку и jстолбец, то полученный опред.будет дополнительным минором, а пара aij и этот минор составляют взимодополнительную пару минора.
Обозначим Sм = i1+i2…ik+j1+j2…jk
Алгебраическим
дополнением минора М называется его
доп.минор, взятый со знаком + или – в
зависимости от четности/нечетности
суммы Sм.
Ам =
* М’(n-k)
Теорема1: произведение любого минора М kого порядка на его опред.d является алг.суммой, слагаемые кот.получается от умножения члена минора М на взятые со знаком члены минора М’. Эти члены – члены опред., причем их знак и в сумме совпадает с теми знаками, с кот.они входят в состав опред. Пусть минор М располагается в первых k строках и столбцах нашего опред.
Пусть минор М располагается в первых k строках и столбцах нашего определителя.
Sм = 1+2+…+k+1+2+…+k=2(1+2+…+k)
И при любом значении k это число четное, поэтому алг.доп. минора М является доп. минор М’. Выберем правильный член минора М.
Его знак в миноре М бедет определяться членом
, l – это число инверсий в подстановке.
Рассмотрим доп.минор М’
и выпишем произвольный член минора.
(3)
В
этом миноре данный член имеет знак
, где l’
– число инверсий в
(4)
рассмотрим число произведений
элементов=произведению 1 и 3
(5)
Элементы
произведения расположены в разных
строчках и столбцах опредd!
Очевидно, это произведение – его член.
Знак числа 5 в произведении М*М’ будет
произведением знаков
*
,
т.е.
Такой
же знак имеет произведение 5 в опред.d,
т.к. нижняя строчка подстановки из
индексов этого произведения содержит
l+l’
инверсий, т.к. никакое α не может составлять
инверсии ни с каким β, ведь α
,
а все β
Чтд(для частного случая)
Рассмотрим общий случай. Пусть минор М’ располагается в строках с номерами i1i2… и столбцах j1j2…причем данные последовательности номеров удовлетворяют i1<i2<ik, j1<j2<jk. Переместим минор М’ в первый верхний угол, т.е. первые k строк и столбцов. 2 этапа!
1.Переместим минор М в первые k строк. При этом строку с номером i1 меняем с i1-1, затем со строкой i1-2 и тд. До тех пор пока строка i1 не займет место первой строки. При этом строчку с номером i1 мы переставили (i1-1)раз. Далее строку с номером i2 переставляем с предыдущими, пока она не займет строки с номером 2; (i1-2)раза и тд., довершая эту процедуру до тех пор пока строка с номером ik не займет место kтой строки. При этом строку с номером ik нужно переставить (ik-k)раз. Общее число транспозиций на 1ом этапе: (i1-1)+(i2-2)+…=(i1+i2+…+ik)-(1+2+…+k). После преобразований получим опред.d’, в кот.минор М будет занимать первые k строк.
2.переместим минор в первые k столбцов. При этом столбец с номером j1 будет меняться со всеми предшествующими номерами пока не займет место 1ого столбца. Очевидно, что при таком преобразовании все столбцы будут представлены местами (j1+j2+…+k)-(1+2+…+k)раз. После преобразования получим опред.d’’, в кот.минор М будет занимать левый верхний угол. Т.к. каждый раз переставлялись средние строки или столбцы, то взаимное расположение доп.минора М’остается без изменения => минор М’ – доп.к минору М в опред.d’’. И , очевидно, минор М’ в опред.d’’ располагается в правом нижнем углу. На основании данной выше теоремы: (М * М’) – сумма колич.членов,опред.d’’, взятых с теми же знаками с какими они входят в d! (i1+…+ik) + (j1 + …+jk) – 2(1+2+…k)
Sм
+ всегда четное => не
влияет на знак
* М * М’ состоит из некот.колва членов
опред.d
, взятых с теми же знаками, какие они
имеют в этом опред. чтд
*замечание: если миноры М и М’ взаимодоп., то числа Sм и Sм’ имеют одинаковую четность.