- •1.Економіко-математична модель. Класифікація моделей
- •2. Геометрична інтерпретація роз’язку цілочислових задач лінійного програмування.
- •4. Математичний інструмент, який використовується для побудови економіко-математ. Моделей.
- •6. Формула Тейлора. Матриця Гессе, її структура, та її використання для дослідження функцій на екстремум.
- •7. Системи нерівностей. Область допустимих розв’зків системи нерівностей.
- •8. Ознаки множинних розв’язків системи нерівностей, кутові точки.
- •9. Суть ідеї методу відтинання для задач цілочислового програмування.
- •10. Додатньо та від’ємно визначена матриця Гессе. Використання цих ознак матриці для дослідження функції на екстремум.
- •11. Загальний запис лінійної оптимізаційної моделі. Цільова функція та система обмежень.
- •12. Описати алгоритм розв’язання цілочислових задач лінійного програмування за методом Гоморі.
- •13. Метод приведеного градієнта (метод Якобі).
- •14. Допустимий план розв’язку задач лінійного програмування, опорний та оптимальний плани.
- •16. Матриця Якобі, матриця управління.
- •17. Векторно-математична форма запису задачі лінійного програмування.
- •18. Геометрична інтерпретація розвязку задач лінійного програмування на площині.
- •19. Градієнт функції
- •20. Основні властивості розв’язків задач лінійного програмування.
- •21. Геометрична інтерпретація лінійних оптимізаційних моделей на площині.
- •22. Описати алгоритм методу Гоморі розвязку задач цілочислового математичного програмування.
- •23. Симплексний метод розвязування задач лінійного програмування. Ідея методу.
- •24. Розвязування дробово-лінійної оптимізаційної задачі зведенням до задачі лінійного програмування.
- •25. Градієнтний метод. Ідея методу.
- •29. Окантована матриця Гессе, та її використання при розв'язку нелінійних задач.
- •30. Структура симплексної таблиці. Базисні та вільні вектори. Оцінковий рядок симплексної таблиці.
- •31. Приведення задачі дробово-лінійного програмування до оптимізаційної задачі лінійного програмування.
- •34. Цілочислові оптимізаційні моделі. Класифікація моделей цілочислової оптимізації.
- •35. Метод множників Лагранжа. Поняття абсолютного та умовного екстремуму функції.
- •36. Симплексний метод. Вибір напрямного стовпчика і рядка при здійсненні ітерації.
- •37. Загальний запис нелінійної оптимізаційної моделі.
- •39. Метод штучного базису. Суть базису.
- •40. Окантована матриця Гессе та її побудова.
- •43. Метод множників Лагранжа
- •44.Метод штучного базису
- •47.Нелінійні моделі. Визначення стац. Точок при викор. Методу множників Лагранжа
- •48.Правила побудови двоїстих задач
- •52. .Приведення дробово-лінійної оп-ної задачі до задачі лінійного програмування.
- •53. Сиплекс табл. Для задачі лінійного програм з штучним базисом
- •54. В яких випадках викор дроб-лін цільова ф-ція при розв’язуванні екон задач
- •56.Записати загальний запис моделі та записати економічний зміст коефіцієнтів моделі.
- •57.Описати алгоритм розвязання задач лінійного програмування симплексним методом.
- •58.Загальна структура симплексної таблиці при реалізації симплексного методу для задачі цілочислового програмування.
- •59.Градієнтний метод.Основна властівість градієнта.Ідея методу.
- •60. Загальний запис лінійної оптимізаційної задачі.Приведення моделі до канонічного вигляду.Описати економічний зміст кофіцієнтів.
- •60. Загальний запис лінійної оптимізаційної моделі. Приведення моделі до канонічного вигляду.Описати економічний зміст коефіцієнтів bj,cj,aij
- •61. Графічний метод розв’язання цілочислових задач лінійного програмування.
- •62. Визначення мін(макс) для цільової функції
- •64 Записати математичну модель оцінки рентабельності виготовленої продукції
- •65. Аналіз коефіцієнтів цільової функції cj, dj.
- •67. Пряма та двоїста задачі лінійного програмування. Визначення Lmin для двоїстої задачі по результатам симплексної таблиці прямої задачі.
- •68 Базисні та вільні вектори,базисні та вільні невідомі. Як визначити число базисних векторів по заданій матриці ∆
- •69. Загальний запис математичної моделі дробово-лінійної задачі приведення її до задачі лінійного програмування.
- •71.Чому дорівнюють .
- •72.Задачу в лінійному програмуванні в загальному вигляді привести до канонічного вигляду.Базисні і вільні зміні.Економічна інтерпретація коефіцієнтів моделі а,с,b.
- •73.Математичне програмування. Обєкт матем програмування. Визначення матем моделі.
- •75.Записати економіко-матем модель в загальному вигляді.
- •76.Окантована матриця Гесе. Достатні умови для ідентифікації екстремальних точок.
- •77. Базисні та вільні вектори. Визначення базисних векторів по заданій матриці ∆.
- •78. Визначення вільних векторів через базисні.
- •79. Що описує система обмежень задачі лінійного програмування Загальний запис економіко-математичної моделі.
- •80. Симплексний метод розв’язування задач лінійного програмування. Використання методу Жордана-Гаусса для визначення елементів аij симплексної таблиці.
- •81. Структура окантованої матриці н. Визначення матриць р, Рт, q. Використання матриці н для дослідження стаціонарних точок.
- •82. Економіко-математична модель. Правила, які потрібно дотримуватись при побудові такої моделі. Поняття адекватності економіко-математичної моделі.
- •83. Симлексна таблиця для задачі лінійного прорамування. Оцінючий та оцінючий стовпчик
- •Структура симплексної таблиці для розв’язку задач лінійного програмування
- •84. Метод відтинання. Метод Гоморі. Як отримати нерівність правильного відтинання
- •85. Записати загальний запис математичного програмування. Лінійні та нелінійні моделі.
- •86. Cтруктура матриць а та Ат
- •87.Дробово- лінійне програмування. Система обмежень. Яку інформацію містять
- •88. Градієнтний метод Франка-Вульфа
- •89. Метод приведеного градієнта(метод Якобі).
- •90 Загальні форми запису лінійних оптимізаційних задач
- •91. Цілочислове програмування. В яких випадках воно використовується. Геометричний розв’язок цілочислових задач на пощині.
- •92.Дати визначення допустимого плану. Область існування планів,оптимальний план
- •93. Цілочислове програмування. Визначення оптимального плану для цілочислової моделі графічним методом на площині.
- •1.Економіко-математична модель. Класифікація моделей.
- •2. Геометрична інтерпретація роз’язку цілочислових задач лінійного програмування.
- •3. Глобальний та умовний екстремуми цільової функції. Необхідна умова існування екстремуму.
- •214 Феф ми найкращі Дякую всім, хто приймав участь
57.Описати алгоритм розвязання задач лінійного програмування симплексним методом.
Алгоритм розв’язування задачі лінійного програмування симплекс-методом складається з п’яти етапів:
Визначення початкового опорного плану задачі лінійного програмування.
Побудова симплексної таблиці.
Перевірка опорного плану на оптимальність за допомогою оцінок
.
Якщо всі оцінки задовольняють умову
оптимальності, то визначений опорний
план є оптимальним планом задачі. Якщо
хоча б одна з оцінок
не задовольняє умову оптимальності,
то переходять до нового опорного плану
або встановлюють, що оптимального
плану задачі не існує.Перехід до нового опорного плану задачі здійснюється визначенням розв’язувального елемента та розрахунками елементів нової симплексної таблиці.
Повторення дій, починаючи з п. 3.
Далі ітераційний процес повторюють, доки не буде визначено оптимальний план задачі.
58.Загальна структура симплексної таблиці при реалізації симплексного методу для задачі цілочислового програмування.
У
стовпці «Базис» записані змінні, що
відповідають базисним векторам, а в
стовпці «Сбаз» — коефіцієнти функціонала
відповідних базисних векторів. У стовпці
«План» — початковий опорний план
,
в цьому ж стовпці в результаті обчислень
отримують оптимальний план. У стовпцях
записані коефіцієнти розкладу
кожного j-го вектора за базисом, які
відповідають у першій симплексній
таблиці коефіцієнтам при змінних у
системі.У (m + 1)-му рядку в стовпці «План»
записують значення функціонала для
початкового опорного плану
,
а в інших стовпцях
— значення оцінок
.
59.Градієнтний метод.Основна властівість градієнта.Ідея методу.
Градієнтні методи належать до наближених методів розв’язування задач нелінійного програмування і дають лише певне наближення до екстремуму, причому за збільшення обсягу обчислень можна досягти результату з наперед заданою точністю, але в цьому разі є можливість знаходити лише локальні екстремуми цільової функції. Зауважимо, що такі методи можуть бути застосовані лише до тих типів задач нелінійного програмування, де цільова функція і обмеження є диференційовними хоча б один раз. Зрозуміло, що градієнтні методи дають змогу знаходити точки глобального екстремуму тільки для задач опуклого програмування, де локальний і глобальний екстремуми збігаються.
В основі градієнтних методів лежить основна властивість градієнта диференційовної функції — визначати напрям найшвидшого зростання цієї функції. Ідея методу полягає у переході від однієї точки до іншої в напрямку градієнта з деяким наперед заданим кроком.
60. Загальний запис лінійної оптимізаційної задачі.Приведення моделі до канонічного вигляду.Описати економічний зміст кофіцієнтів.
Загалом лінійна економіко-математична модель даної задачі матиме вигляд:
за
умов:
.
для
деякої виробничої системи (цеху,
підприємства, галузі) необхідно визначити
план випуску n видів продукції Х = (х1,
х2, …, хn) за умови найкращого способу
використання її наявних ресурсів. У
процесі виробництва задіяні m ресурсів:
сировина, трудові ресурси, технічне
оснащення тощо. Відомі загальні запаси
ресурсів
,
норми витрат і-го ресурсу на виробництво
одиниці j-ої продукції
та прибуток з одиниці j-ої реалізованої
продукції
.
Критерій оптимальності: максимум прибутку.
Позначимо через х1, х2, …, хn обсяги виробництва відповідно першого, другого і т. д. видів продукції.
Оскільки
на одиницю продукції 1-го виду витрачається
ресурсу першого виду, то на виробництво
першого виду продукції обсягом х1
необхідно витратити а11х1 цього ресурсу.
На другий вид продукції обсягом х2
витрати першого ресурсу дорівнюватимуть
а12х2 і т. д. На виробництво всіх видів
продукції буде використано такий обсяг
першого ресурсу: а11х1 + а12х2 + … + + а1nxn.
Ця величина має не перевищувати наявного
обсягу першого ресурсу — b1. Отже,
обмеження щодо використання першого
ресурсу матиме вигляд: а11х1 + а12х2 + … +
а1nxn ≤ b1. Аналогічно записують обмеження
стосовно використання всіх інших
виробничих ресурсів. Прибуток від
реалізації виготовленої продукції
всіх видів становитиме: с1х1 + с2х2 + … +
сnxn.
