Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
My_horosho_postaralis_2003_WORD.doc
Скачиваний:
9
Добавлен:
21.04.2019
Размер:
4.02 Mб
Скачать

34. Цілочислові оптимізаційні моделі. Класифікація моделей цілочислової оптимізації.

Існує доволі широке коло задач математичного програмування, в економіко-математичних моделях яких одна або кілька змінних мають набувати цілих значень. Наприклад, коли йдеться про кількість верстатів у цеху, тварин у сільськогосподарських підприємствах тощо.

Задача математичного програмування, змінні якої мають набувати цілих значень, називається задачею цілочислового програмування. У тому разі, коли цілочислових значень мають набувати не всі, а одна чи кілька змінних, задача називається частково цілочисловою. До цілочислового програмування належать також ті задачі оптимізації, в яких змінні набувають лише двох значень: 0 або 1 (бульові, або бінарні змінні). Умова цілочисловості є по суті нелінійною і може зустрічатися в задачах, що містять як лінійні, так і нелінійні функції. У даному розділі розглянемо задачі математичного програмування, в яких крім умови цілочисловості всі обмеження та цільова функція є лінійними, що мають назву цілочислових задач лінійного програмування.

Загальна цілочислова задача лінійного програмування записується так:

за умов:

; ; — цілі числа .

35. Метод множників Лагранжа. Поняття абсолютного та умовного екстремуму функції.

Ідея методу множників Лагранжа полягає в заміні початкової задачі простішою. Для цього цільову функцію замінюють іншою, з більшою кількістю змінних, тобто такою, яка включає в себе умови, що подані як обмеження. Після такого перетворення дальше розв’язування задачі полягає в знаходженні екстремуму нової функції, на змінні якої не накладено ніяких обмежень. Тобто від початкової задачі пошуку умовного екстремуму переходимо до задачі відшукання безумовного екстремального значення іншої функції. Отже, завдяки такому перетворенню можливе застосування методів класичного знаходження екстремуму функції кількох змінних. У попередньому параграфі наведена необхідна умова існування локального екстремуму неперервної та диференційовної функції двох змінних. Узагальнення необхідної умови існування локального екстремуму функції n змінних має аналогічний вигляд. Отже, для розв’язування задачі необхідно знайти вирази частинних похідних нової цільової функції за кожною змінною і прирівняти їх до нуля. В результаті отримаємо систему рівнянь. Її розв’язок визначає так звані стаціонарні точки, серед яких є і шукані екстремальні значення функції.

У теорії дослідження функцій задача на відшукання екстремальних значень не містить ніяких додаткових умов щодо змінних і такі задачі належать до задач відшукання безумовного екстремуму функції. Локальний та глобальний екстремуми тоді визначаються з необхідних та достатніх умов існування екстремуму функції.

Нагадаємо, що необхідна умова існування локального екстремуму функції двох змінних формулюється так: для того, щоб точ­ка була точкою локального екстремуму, необхідно, щоб функція була неперервною і диференційовною в околі цієї точки і перші частинні похідні за змінними та у цій точ­ці дорівнювали нулю:

.Точка називається критичною.

Достатня умова існування локального екстремуму функції двох змінних формулюється так: для того, щоб критична точка була точкою локального екстремуму, достатньо, щоб функ­ція була визначена в околі критичної точки та мала в цій точці неперервні частинні похідні другого порядку.

Тоді, якщо

,

то в точці функція має екстремум, причому, якщо

,тоді — точка локального максимуму функції , а якщо ,тоді — точка локального мінімуму функції . У разі, якщо

,

то в точці функція екстремуму не має. Якщо

,

то питання про існування екстремуму залишається відкритим.

Якщо задача полягає у відшуканні локального чи глобального екстремуму деякої функції за умови, що на змінні такої функції накладаються додаткові обмеження, то маємо задачу пошуку умовного екстремуму функції. Термін «умовний» означає, що змінні задачі мають задовольняти деякі умови.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]