
- •2. Объект и предмет изучения экология.
- •3. Цели изучения и практическое направленность экологии.
- •4. Самостоятельность экологии и её главное отличие от географии и биологии.
- •5. Географическая экология /Геоэкология/ как самостоятельное научное направление.
- •6. Экология и экологистика.
- •7. Охрана природы и охрана окружающей среды: их соотношение с экологией.
- •8. Понятие «биосфера»: основные определения и характеристики.
- •9. Учение Вернадского о биосфере как теоретическая основа охраны природы.
- •10. Возникновение и и эволюция биосферы.
- •11. Граница и структура биосферы.
- •12. Разнообразие организмов в биосфере.
- •13. Живое вещество биосферы и его геохимическая работа.
- •14. Основные законы функционирование биосферы.
- •16 Понятие о системе «организм-среда»
- •17. Традиционная классификация факторов среды
- •18. Классификация факторов среды по н.Ф.Реймерсу:
- •19 Понятие о лимитирующем факторе
- •20 Законы минимума ю. Либиха и толерантности в. Шелфорда
- •21 Положения ю. Одума , дополняющие закон толерантности
- •22 Основные типы адаптаций организмов к факторам среды
- •23 Эврибионтные и стенобионтные организмы
- •24. Свет. Солнечная радиация. Действие равных участков спектра солнечного излучения на живые организмы.
- •25. Значение интенсивности света. Экологические группы растений по отношению к свету.
- •26. Фотопереодизм. Свет и поведение животных.
- •27. Температура. Температурные границы существования видов.
- •28. Пойкилотермные организмы. Эффективные температуры их развития. Гомеотермные и гетеротермные организмы. Терморегуляция животных.
- •29. Влажность. Адаптации организмов к водному режиму наземно-воздушной среды.
- •30. Газовый состав воздуха и его влияние на организм.
- •31. Ветер, давление воздуха и их влияние на организм.
- •32. Совокупность действия климатических факторов. Суточная, сезонная и многолетняя ритмика в жизни организмов.
- •33. Эдафические факторы. Значение почвы, ее механического состава, химизма, физических особенности.
- •34. Почва как среда обитания. Почвенные горизонты.
- •35. Значение снежного покрова в жизни растений и животных.
- •36. Орографические факторы в жизни растений и животных.
- •37. Плотность и вязкость воды
- •39. Кислородный режим водоемов.
- •40. Солевой режим водной среды.
- •41. Температурный режим и температурная стратификация водоемов.
- •42. Прозраность воды и световой режим водоемов.
- •43. Прямые и косвенные взаимоотношения между организмами.
- •44. Гомотипические и гетеротипические реакции.
- •45. Типы взаимоотношений между организмами.
- •46. Ограничивающий экологический фактор.
- •47. Экологические ряды и экологическая индивидуальность.
- •48. Правило предварения
- •49. Принцип стациональной верности
- •50. Правила смены местообитаний и ярусов.
- •51. Принципы экологической классификации организмов по характеру питания и способу добывания пищи.
- •52. Жизненные формы растений. Классификация к. Раункиера.
- •52. Разнообразие жизненных форм растений.
- •54. Жизненные формы животных. Классификации а.Н. Формозова, д.Н. Кашкарова
- •55. Основные характеристики популяций
- •56. Типы динамики численности популяций
- •58.Заповедование как форма сохранения популяций растений и животных. Расчет площадей заповедника.
- •59 . Понятие о биоценозе.
- •60. Видовая структура биоценоза. Индекс разнообразия видов в биоценозе.
- •61. Пространственная структура биоценоза. Ярусность и мозаичность фитоценоза.
- •62. Понятие об экологической нише
- •63. Устойчивость биоценозов
- •64. Понятие об экосистеме
- •65. Учение о биогеоценозе
- •66. Структура наземной и водной экосистем
- •67. Гомеостаз и сукцессия экологической системы.
- •68. Поток солнечной энергии и синтез первичного органического вещества в биогеоценозах.
- •69. Понятие о трофической цепи.
- •70. Энергетика и продуктивность экосистем.
- •71. Экологические пирамиды чисел.
- •73. Экологические примеры энергий. Закон р. Линдемана.
- •74. Правило биологического усиления в трофических цепях.
- •75. Распределение биологической продукции в экосистемах Земли.
- •76. Агроэкосистемы и их основных отличия от природных экосистем.
- •77. Суть экологического эксперимента ю. Одума с трофической цепью люцерна-телята-мальчик.
- •78. Лесные экосистемы и их использование.
- •79. Степные экосистемы
- •80. Луговые экосистемы
- •81. Экосистемы тундры
- •84. Морские экосистемы. Морские экосистемы
73. Экологические примеры энергий. Закон р. Линдемана.
Пирамида энергии - величина потока энергии, проходящего через различные трофические уровни. В отличие от пирамиды чисел или биомассы, характеризующих статику экосистемы, пирамида энергии характеризует динамику прохождения массы пищи через пищевую цепь. На ее форму не влияют ни размеры особей, ни интенсивность их метаболизма. Кроме того, пирамида чисел преувеличивает роль мелких организмов, пирамида биомассы преувеличиват роль крупных. Поэтому пирамида энергии является наиболее универсальной характеристикой для сравнения потока энергии, проходящего через разные уровни, а также для сравнения одной экосистемы с другой.
В 1942 г. Р. Линдеман сформулировал закон пирамиды энергий, или закон (правило) 10 %, согласно которому с одного трофического уровня экологической пирамиды переходит на другой, более высокий ее уровень (по «лестнице»: продуцент консумент редуцент) в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Обратный поток, связанный с потреблением веществ и продуцируемой верхним уровнем экологической пирамиды энергией более низким ее уровням, например от животных к растениям, намного слабее не более 0,5 % (даже 0,25 %) от общего ее потока, и потому говорить о круговороте энергии в биоценозе не приходится.
74. Правило биологического усиления в трофических цепях.
ПРАВИЛО БИОЛОГИЧЕСКОГО УСИЛЕНИЯ , накопление живыми организмами ряда химич. неразрушающихся веществ (пестициды, радионуклиды и др.), ведущее к биологич. усилению их действия по мере прохождения в биологич. циклах и по пищевым цепям. В наземных экосистемах с переходом на каждый трофич. уровень происходит по крайней мере 10-кратное увеличение концентрации токсич. веществ. В водных экосистемах накопление многих токсич. веществ (напр., хлорсодержащих пестицидов) коррелирует с массой жиров (липидов). Могут вызвать мутагенный, канцерогенный, летальный и др. эффекты. Кроме того, такие загрязнители могут образовывать др. ядовитые вещества в окружающей среде. Единственный пока возможный способ предотвратить их — правильное их применение в народном хозяйстве с последующим изъятием из системы жизнеобеспечения окружающей среды.
75. Распределение биологической продукции в экосистемах Земли.
Важнейшим практическим результатом энергетического подхода к изучению экосистем явилось осуществление исследований по Международной биологической программе, проводившихся учеными разных стран мира в течение ряда лет, начиная с 1969 г. в целях изучения потенциальной биологической продуктивности Земли.
Теоретическая возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Максимально достигаемый в природе КПД фотосинтеза 10–12 % энергии ФАР, что составляет около половины от теоретически возможного. Такая скорость связывания энергии достигается, например, в зарослях джугары и тростника в Таджикистане в кратковременные, наиболее благоприятные периоды. КПД фотосинтеза в 5 % считается очень высоким для фитоценоза. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1 %, так как фотосинтетическая активность растений ограничивается множеством факторов.
Мировое распределение первичной биологической продукции крайне неравномерно (рис. 152). Самый большой абсолютный прирост растительной массы достигает в среднем 25 г/м2 в день в очень благоприятных условиях, например в эстуариях рек и в лиманах аридных районов, при высокой обеспеченности растений водой, светом и минеральным питанием. На больших площадях продуктивность автотрофов не превышает 0,1 г/м2. Таковы жаркие пустыни, где жизнь лимитируется недостатком воды, полярные пустыни, где не хватает тепла, и обширные внутренние пространства океанов с крайним дефицитом питательных веществ для водорослей. Общая годовая продукция сухого органического вещества на Земле составляет 150–200 млрд т. Более трети его образуется в океанах, около двух третей – на суше. Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Энергия, недоиспользованная консументами, запасается в их телах, органических осадках водоемов и гумусе почв.
Эффективность связывания растительностью солнечной радиации снижается при недостатке тепла и влаги, при неблагоприятных физических и химических свойствах почвы и т. п. Продуктивность растительности изменяется не только при переходе от одной климатической зоны к другой, но и в пределах каждой зоны. На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с увеличением притока тепла и продолжительности вегетационного сезона. Годовой прирост растительности изменяется от 20 ц/га на побережье и островах Северного Ледовитого океана до более чем 200 ц/га на Черноморском побережье Кавказа. В среднеазиатских пустынях продуктивность падает до 20 ц/га.
Средний коэффициент использования энергии ФАР для всей территории бывшего СССР составляет 0,8 %: от 1,8–2,0 % на Кавказе до 0,1–0,2 % в пустынях Средней Азии. В большинстве восточных районов, где менее благоприятны условия увлажнения, этот коэффициент составляет 0,4–0,8 %, на европейской территории – 1,0–1,2 %. КПД суммарной радиации примерно вдвое ниже.
Для пяти континентов мира средняя продуктивность различается сравнительно мало. Исключением является Южная Америка, на большей части которой условия для развития растительности очень благоприятны (табл. 3).
Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими примерно 10 % площади суши (около 1,4 млрд га). Общий годовой прирост культурных растений составляет около 16 % от всей продуктивности суши, большая часть которой приходится на леса. Примерно половина урожая идет непосредственно на питание людей, остальная часть – на корм домашним животным, используется в промышленности и теряется в отбросах.
Растительная пища обходится для людей энергетически дешевле, чем животная. Сельскохозяйственные площади при рациональном использовании и распределении продукции могли бы обеспечить растительной пищей примерно вдвое большее население Земли, чем существующее. Однако сельскохозяйственное производство нуждается в большой затрате труда и капиталовложениях. Особенно трудно обеспечить население вторичной продукцией. В рацион человека должно входить не менее 30 г белков в день. Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно менее 50 % потребностей современного населения Земли.
Существующие ограничения, накладываемые масштабами вторичной продуктивности, усиливаются несовершенством социальных систем распределения. Большая часть населения Земли находится, таким образом, в состоянии хронического белкового голодания, а значительная часть людей страдает также и от общего недоедания.
Таким образом, увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из основных задач, стоящих перед человечеством.