
- •Введение
- •Основные понятия и определения
- •Виды и методы измерений Виды измерений
- •Классификация физических величин
- •Размер физических величин. “Истинное значение” физических величин
- •Основной постулат и аксиома теории измерений
- •Теоретические модели материальных объектов, явлений и процессов
- •Физические модели
- •Математические модели
- •Единицы, системы единиц.
- •3. Системы единиц физических величин
- •3.1. Система Гаусса
- •3.2. Система сгс
- •3.3. Система мкгсс
- •3.4. Система мтс
- •3.5. Международная система единиц физических величин
- •3.5.1. Важнейшие достоинства Международной системы единиц
- •3.5.2. Основные единицы си и их определения
- •3.5.3. Принцип построения производных единиц си
- •3.5.4. Десятичные кратные и дольные единицы си и правила их образования
- •3.5.5. Относительные и логарифмические единицы си
- •3.5.6. Единицы количества информации си
- •3.5.7. Внесистемные единицы си
- •3.5.8. Правила написания наименований и обозначений единиц си
- •Погрешности измерений
- •Причины возникновения и способы исключения систематических погрешностей
- •Основные характеристики измерительных приборов и преобразователей
- •Обшие сведения об измерительных системах
- •Фотоэффект
- •Кристаллическое состояние Отличительные черты кристаллического состояния
- •Физические типы кристаллических решеток
- •Дефекты в кристаллах
- •Теплоемкость кристаллов
Погрешности измерений
Результат любого измерения отличается от истинного значения измеряемой величины* на некоторое значение, зависящее от точности средств и метода измерения, квалификации оператора, условий, при которых производится измерение. Отклонение результата измерения от истинного значения измеряемой величины называется погрешностью измерения. Различают абсолютные и относительные погрешности измерения:
(1.4)
где
— абсолютная погрешность измерения;
— значение,
полученное при измерении;
-
истинное значение измеряемой величины;
-относительная погрешность измерения.
Относительную погрешность часто выражают в процентах :
(1.5)
Говоря о точности измерений, следует иметь в виду, что высокая точность измерений соответствует малым погрешностям всех видов, присутствующих при проведении измерений.
Количественно
точность может быть выражена обратной
величиной модуля относительной
погрешности. Например, если погрешность
измерения равна 0,1%=
, то точность равна
.
На рис.2. приведена схема классификации погрешностей, возникающих при проведении измерений и испытаний.
В зависимости от характера проявления погрешности делят на систематические, случайные и грубые (промахи).
Погрешность
,
определяемая выражением (1.1), является
результирующей погрешностью, т.е.
суммой систематической
и случайной
погрешностей.
Систематической погрешностью измерения называется составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины.
Причиной появления систематических погрешностей могут быть неисправности измерительной аппаратуры, несовершенство метода измерений, неправильная установка измерительных приборов и отступление от нормальных условий их работы, особенности самого оператора. Систематические погрешности в принципе могут быть выявлены и устранены. Для этого требуется проведение тщательного анализа возможных источников погрешностей в каждом конкретном случае.
Случайной погрешностью измерения называется составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины.
Наличие случайных погрешностей выявляется при проведении ряда измерений этой величины, когда оказывается, что результаты измерений не совпадают друг с другом. Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности мало влияет на результат измерения.
В некоторых случаях результат отдельного измерения резко отличается от результатов других измерений, выполненных при тех же условиях. Причиной этого может быть толчок, нарушение электрического контакта и т.д. Такой результат, содержащий грубую погрешность (промах), следует исключить и не учитывать при дальнейшей статистической обработке результатов измерения.
Причины возникновения и способы исключения систематических погрешностей
Существуют некоторые общие причины возникновения систематических погрешностей, в соответствии с которыми их подразделяют на методические, инструментальные и субъективные.
Методические погрешности происходят от несовершенства метода измерения, использования упрощающих предположений и допущений при выводе применяемых формул, влияния измерительного прибора на объект измерения. Например, измерение температуры с помощью термопары может содержать методическую погрешность, вызванную нарушением температурного режима исследуемого объекта (вследствие внесения термопары).
Инструментальные погрешности зависят от погрешностей применяемых средств измерения. Например, неточность градуировки, конструктивные несовершенства, изменения характеристик прибора в процессе эксплуатации и т.д. являются причинами инструментальных погрешностей.
Субъективные погрешности вызываются неправильными отсчетами показаний прибора человеком (оператором).
Это может случиться, например, из-за неправильного направления взгляда при наблюдении за показаниями стрелочного прибора (погрешность от параллакса). Использование цифровых приборов и автоматических методов измерения позволяет исключить такого рода погрешности.
Поправкой называется значение величины, одноименной с измеряемой, которое нужно прибавить к полученному при измерении значению величины с целью исключения систематической погрешности.
В некоторых случаях используют поправочный множитель — число, на которое умножают результат измерения для исключения систематической погрешности.
Поправка или поправочный множитель определяется при помощи поверки технического средства, составления и использования соответствующих таблиц и графиков. Применяются также расчетные способы нахождения поправочных значений.
С помощью средств, содержащих микропроцессорные системы удается производить исключение или коррекцию многих видов систематических погрешностей. Автоматическое введение поправок, расчет и исключение погрешностей позволяют существенно повысить точность измерений.