
- •1.Классификация перенапряжений.
- •2.Молния и ее параметры.
- •3.Методики расчета зон защиты молниеотводов
- •6.Заземление подстанции.
- •9.Молниезащита подстанции
- •Защита от перекрытий при ударе молнии в молниеотводы
- •10. Ип, трубчатые разрядники.
- •11.Разрядник вентильный.
- •2. Коэффициент импульса.
- •3. Коэффициент нелинейности резистора.
- •5. И 6. Напряжение и ток гашения.
- •7. Коэффициент защиты.
- •8. Пропускная способность разрядника.
- •12. Ограничители перенапряжений.
- •14.Классификация внутренних перенапряжений
- •15. Установившиеся перенапряжения
- •16. Коммутационные перенапряжения
- •17. Меры ограничения внутренних перенапряжений
- •18.Основные виды изоляции
- •19.Изоляция воздушных линий электропередачи
- •21. Проходные изоляторы
- •22. Изоляция силовых трансформаторов
- •23. Изоляция силовых кабелей высокого напряжения
- •25. Изоляция силовых конденсаторов
- •26. Изоляция электрических машин высокого напряжения
- •6 − Сталь статора
- •27.Изоляционные конструкции с газовой изоляцией
- •28. Корона на проводах и защита от нее
- •31. Методы испытаний изоляции
- •32. Испытательные установки переменного тока
- •33. Импульсные испытательные установки
- •34. Шаровой измерительный разрядник
18.Основные виды изоляции
Изоляция высоковольтных конструкций подразделяется на внешнюю и внутреннюю.
Внешней изоляцией называются части изоляционной конструкции, в которых изолирующей средой является атмосферный воздух, в том числе у поверхности твердого диэлектрика. Электрическая прочность внешней изоляции зависит от атмосферных и других внешних условий. Несмотря на его сравнительно низкую электрическую прочность всего Епр=1−30 кВ/см, воздушная изоляция имеет ряд достоинств: малая стоимость, отсутствие старения, способность восстанавливать свои изолирующие свойства после погасания разряда.
Внутренней изоляцией называются части изоляционной конструкции, в которых изолирующей средой являются жидкие, твердые или газообразные диэлектрики или их комбинации, не имеющие прямых контактов с атмосферным воздухом.
Длительная практика создания и эксплуатации различного высоковольтного оборудования показывает, что во многих случаях весь комплекс требований наилучшим образом удовлетворяется при использовании в составе внутренней изоляции комбинации из нескольких материалов, дополняющих друг друга и выполняющих несколько различные функции. Так только твердые диэлектрические материалы обеспечивают механическую прочность изоляционной конструкции; обычно они имеют и наиболее высокую электрическую прочность. Высокопрочные газы и жидкие диэлектрики легко заполняют изоляционные промежутки любой конфигурации, в том числе тончайшие зазоры, поры и щели, чем существенно повышают электрическую прочность, особенно длительную.
Наиболее широкое распространение получили следующие виды изоляции.
Бумажно-пропитанная изоляция. Исходными материалами для изготовления бумажно-пропитанной изоляции (БПИ) служат специальные электроизоляционные бумаги и минеральные (нефтяные) масла (бумажно-масляная изоляция) или синтетические жидкие диэлектрики.
Бумажно-пленочная изоляция обладает более высокой кратковременной и длительной электрической прочность. Недостатками БПИ являются невысокая допустимая рабочая температура (не более 90 °С) и горючесть.
Маслобарьерная изоляция (МБИ). Основу этой изоляции составляет минеральное трансформаторное масло, которое надежно заполняет изоляционные промежутки между электродами любой сложной формы и обеспечивает хорошее охлаждение конструкции за счет конвективного или принудительного движения.
Достоинствами МБИ являются относительная простота конструкции и технологии, интенсивное охлаждение активных частей оборудования, а также возможность восстановления качества изоляции в эксплуатации путем сушки и замены масла.
Основные недостатки МБИ − меньшая, чем у бумажно-масляной изоляции, электрическая прочность, пожаро-и взрывоопасность конструкции. Маслобарьерная изоляция используется в качестве главной в силовых трансформаторах от 10 до 1150 кВ, в автотрансформаторах и реакторах высших классов напряжения.
Изоляция на основе слюды. На основе слюды выполняется высоковольтная изоляция класса нагревостойкости В с допустимой рабочей температурой 130 °С для статорных обмоток крупных электрических машин. Основными исходными материалами служат микалента или стеклослюдинитовая лента.
Пластмассовая изоляция в промышленных масштабах используется пока только в силовых кабелях на напряжения до 220 кВ и в импульсных кабелях. Основным диэлектрическим материалом в этих случаях является полиэтилен низкой и высокой плотности.
Газовая изоляция. Для выполнения газовой изоляции в высоковольтных конструкциях используются азот, двуокись углерода и элегаз. Наиболее перспективным является элегаз. Он имеет наибольшую среди указанных газов электрическую прочность, высокие дугогасящие свойства и является хорошей теплоотводящей средой. Основной областью применения элегазовой изоляции являются герметизированные распределительные устройств (ГРУ) на напряжения 110 кВ и выше.
На оборудование, работающее в электрических сетях, воздействуют следующие виды напряжения: рабочее напряжение; внутренние перенапряжения; грозовые перенапряжения.
Рабочее напряжение. В России электрические сети подразделяются на классы напряжения, которые совпадают с номинальным линейным напряжением сети Uном. ГОСТ 1516.3-96 устанавливает для каждого класса напряжения наибольшее рабочее напряжение (линейное) Uраб.наиб, которое равно Uраб.наиб = kp∙Uном, причем значение kp принимается 1,05−1,2.
Внутренние перенапряжения. Наиболее важной характеристикой перенапряжения является максимальное значение Umax или кратность kn по отношению к амплитуде наибольшего рабочего фазного напряжения Uраб.наиб
Для оборудования подстанций вводится понятие о расчетной кратности внутренних перенапряжений kpк., для которой появление перенапряжений с большей кратностью маловероятно (1 раз в 50−100 лет). Значение расчетной кратности внутренних перенапряжений выбирается из технико-экономических соображений с учетом характеристик защитных устройств.
Грозовые перенапряжения. При ударе молнии в провод линии электропередачи или при ударе молнии в грозозащитный трос или опору и перекрытии гирлянды изоляторов с опоры на провод по проводу начинает распространяться волна, набегающая на подстанцию. Расчетные значения напряжений, воздействующих на изоляцию оборудования при грозовых перенапряжениях Uвозд. гроз = kгроз∙Uост. разр, где Uост. разр − остаюшееся напряжение на разряднике при токах координации; kгроз − коэффициент, учитывающий перепад напряжения между разрядником (ОПН) и защищенным объектом.