
- •Путилин а.Б. Организация эвм и систем
- •Глава 11. Общая характеристика микропроцессоров 154
- •Глава 12. Интерфейсы программно-модульных и
- •Глава 13. Интерфейсы и шины персональных эвм 221
- •Введение
- •Глава 1 Представление информации в информационных системах
- •1.1. Понятие об информации и информационных процессах
- •1.2. Сигналы и информация
- •1.3. Виды информации и их классификация
- •1.4. Структура информации
- •1.5. Дискретизация сигналов при вводе в эвм
- •Контрольные вопросы
- •Глава 2 Аналоговые вычислительные устройства
- •2.1. Методы моделирования
- •2.2. Методы построения аналоговых вычислительных устройств
- •2.3. Основные характеристики аву
- •2.4. Функциональные устройства
- •2.5. Суммирующие и вычитающие устройства
- •2.6. Дифференцирующие устройства
- •2.7. Интегрирующие устройства
- •Контрольные вопросы
- •Глава 3 Цифровые вычислительные устройства
- •3.1. Основные понятия и определения цифровой вычислительной техники.
- •3.2. Характеристики эвм
- •3.3. Поколения эвм
- •Контрольные вопросы
- •Глава 4 Математическое введение в цифровую вычислительную технику.
- •4.1. Системы счисления, используемые в эвм
- •4.2. Формы представления числовой информации в эвм
- •4.3. Машинные коды чисел
- •4.4. Кодирование алфавитно-цифровой информации
- •4.5. Элементы алгебры логики
- •4.6. Функционально полные системы
- •4.7. Минимизация функций алгебры логики
- •Контрольные вопросы
- •Глава 5 Комбинационные цифровые устройства
- •5.1. Понятие о комбинационных и последовательностных цифровых устройствах
- •5.2. Базовые интегральные логические элементы
- •5.3. Синтез кцу
- •Контрольные вопросы
- •Глава 6 Типовые кцу
- •6.1. Дешифраторы
- •6.2. Шифраторы
- •6.3. Мультиплексоры
- •6.4. Сумматоры
- •Контрольные вопросы
- •Глава 7 Анализ работы кцу
- •7.1. Быстродействие кцу
- •7.2. Состязания в кцу
- •Контрольные вопросы
- •Глава 8 Понятие о пцу
- •8.1. Основные определения и структура пцу
- •8.2. Классификация триггеров
- •8.3. Асинхронный rs-триггер с прямыми входами
- •8.4. Синхронный rs–триггер со статическим управлением
- •8.5. Универсальный jk–триггер
- •Контрольные вопросы
- •Глава 9 Типовые пцу
- •9.1. Регистры
- •9.2. Cчетчики
- •9.3. Сумматоры на основе пцу
- •9.4. Построение запоминающих устройств
- •Контрольные вопросы
- •Глава 10 Аналого-цифровые и цифро-аналоговые преобразователи
- •10.1. Аналого-цифровые преобразователи (ацп)
- •10.2. Ацп с интегрированием
- •10.3. Ацп c последовательным сравнением
- •10.4. Ацп с преобразованием измеряемой величины в кодируемый временной интервал
- •10.5. Ацп двоичного поразрядного уравновешивания
- •10.6. Основные характеристики ацп
- •10.7. Цифро-аналоговые преобразователи (цап)
- •Контрольные вопросы
- •Глава 11 Общая характеристика микропроцессоров
- •11.1. Использование микропроцессоров в иит
- •11.2. Структура микропроцессоров
- •11.3. Классификация микропроцессоров
- •11.4. Программное управление мп
- •11.5. Особенности построения модульных мп
- •11.6. Принципы организации эвм с использованием мп
- •Контрольные вопросы
- •Глава 12 Интерфейсы информационных и вычислительных систем
- •12.1. Назначение и характеристики интерфейсов
- •12.2. Принципы организации интерфейсов
- •12.3. Классификация интерфейсов
- •12.4. Системные интерфейсы мини- и микроЭвм. Общая характеристика системных интерфейсов
- •12.5. Интерфейсы мини- и микроЭвм рдр –11
- •12.6. Интерфейсы мини- и микроЭвм nova
- •12.7. Интерфейсы 8- и 16-разрядных микроЭвм
- •12.8. Устройства согласования системных интерфейсов
- •Контрольные вопросы
- •Глава 13 Малые интерфейсы стандартных устройств
- •13.1. Общая характеристика
- •13.2. Интерфейс ирпр
- •13.3. Интерфейс ирпс
- •Глава 14
- •14.1. Программно-модульный интерфейс iec 625-1. Общая характеристика интерфейса
- •14.2. Логическая организация интерфейса
- •14.3. Схемы поддержки и бис для интерфейса
- •14.4. Локальные системы на базе интерфейса
- •14.5. Интерфейсы магистрально-модульных и мультимикропроцессорных систем. Развитие интерфейсов системы камак
- •14.6. Интерфейсы системы Multibus
- •14.7. Интерфейс системы Fastbus
- •Контрольные вопросы
- •Глава 15 Интерфейсы и шины персональных эвм
- •15.1. Общая характеристика интерфейсов
- •15.2 Последовательный и параллельный интерфейсы
- •15.3. Универсальная последовательная шина usb
- •Топология
- •Кабели и разъемы
- •15.4. Интерфейс портативных компьютеров (pcmcia)
- •15.5. Шины персональных компьютеров эвм серии pc/at
- •Факс-модем
- •Принтер
- •15.6. Локальные шины (Local bus и vl-bus)
- •15.7. Интерфейс FireWare
- •Контрольные вопросы
- •Литература
- •Термины и определения
15.2 Последовательный и параллельный интерфейсы
Последовательный порт (RS-232)
Последовательный интерфейс используется для большинства периферийных устройств, таких как плоттер, сетевой принтер, мышь, внешний модем и т.д. До настоящего времени для последовательной связи IBM PC-совместимых компьютеров используются адаптеры с интерфейсом RS-232С (новое название EIA-232D). В современном IBM PC-совместимом компьютере может использоваться до четырех последовательных портов, имеющих логические имена соответственно COM1, COM2, COM3 и COM4. Основой последовательного адаптера является микросхема UART (Universal Asynchronous Receiver/Transmitter) – универсальный асинхронный приемопередатчик. Обычно используется микросхема UART 16550A. Она имеет 16-символьный буфер на прием и на передачу и, кроме того, может использовать несколько каналов прямого доступа в память DMA. При передаче микросхема UART преобразует параллельный код в последовательный и передает его побитно в линию, обрамляя исходную последовательность битами старта, останова и контроля. При приеме данных UART преобразует последовательный код в параллельный (разумеется, опуская служебные символы). Непременным условием правильной передачи (приема) является одинаковая скорость работы приемного и передающего UART, что обеспечивается стабильной частотой кварцевого резонатора. Основным преимуществом последовательной передачи является возможность пересылки данных на большие расстояния, как правило, не менее 30 метров.
В IBM PC-совместимых персональных компьютерах из 25 сигналов, предусмотренных стандартом RS-232, используются в соответствии с EIA только 9; таким образом, в данном интерфейсе применяются как 25-, так и 9-контактные разъемы типа DB-Shell. В спецификации PC99 подчеркивается, что единственным устройством, использующим последовательный и параллельный порты, в новых ПК может быть только принтер. Остальные устройства должны использовать шины FireWire или USB.
Параллельный порт (LPT)
Параллельный порт (LPT) в IBM PC-совместимом компьютере чаще всего используется для подключения принтера, поэтому его называют также портом принтера. Персональный компьютер работает максимум с тремя параллельными портами, которые имеют логические имена LPT1, LPT2 и LPT3. Подсоединение кабеля к адаптеру параллельного интерфейса производится через 25-контактный разъем типа DB-Shell (DB-25), а со стороны принтера используется специальный 36-контактный разъем типа Centronics. Поскольку частота передаваемых сигналов может достигать десятков кГц, длина таких кабелей обычно не превышает трех метров. Известно несколько модификаций параллельных скоростных интерфейсов, например EPP (Enhanced Parallel Port) и ECP (Extended Capabilities Port). Эти интерфейсы обеспечивают скорость до 2-5 Мбайт/с и поддерживают двустороннюю передачу данных. В настоящее время обе модификации объединены в одном стандарте IEEE 1284.
15.3. Универсальная последовательная шина usb
Шина USB (Universal Serial Bus – универсальная последовательная шина) появилась по компьютерным меркам довольно давно – версия первого утвержденного варианта стандарта появилась 15 января 1996 года. Разработка стандарта была инициировна весьма авторитетными фирмами – Intel, DEC, IBM, NEC, Northen Telecom и Compaq.
Основная цель стандарта, поставленная перед его разработчиками – создать реальную возможность пользователям работать в режиме Plug&Play с периферийными устройствами. Это означает, что должно быть предусмотрено подключение устройства к работающему компьютеру, автоматическое распознавание немедленно после его подключения и последующей установки соответствующих драйверов. Кроме этого, желательно питание маломощных устройств подавать с самой шины. Скорость шины должна быть достаточной для подавляющего большинства периферийных устройств. Попутно решается историческая проблема нехватки ресурсов на внутренних шинах IBM PC совместимого компьютера – контроллер USB занимает только одно прерывание независимо от количества подключенных к шине устройств.
Возможности USB следуют из ее технических характеристик:
Высокая скорость обмена (full-speed signaling bit rate) – 12 Мб/сек.;
Максимальная длина кабеля для высокой скорости обмена – 5 м.;
Низкая скорость обмена (low-speed signaling bit rate) – 1.5 Мб/сек.;
Максимальная длина кабеля для низкой скорости обмена – 3 м.;
Максимальное количество подключенных устройств (включая размножители) – 127;
Возможно подключение устройств с различными скоростями обмена;
Отсутствие необходимости в установке пользователем дополнительных элементов, таких как терминаторы для SCSI;
Напряжение питания для периферийных устройств – 5 В;
Максимальный ток потребления на одно устройство – 500 мА (это не означает, что через USB можно запитать устройства с общим током потребления 127 x 500 мА = 63.5 A).
Целесообразно подключать к USB практически любые периферийные устройства, кроме цифровых видеокамер и высокоскоростных жестких дисков. Особенно удобен этот интерфейс для подключения часто подключаемых/отключаемых приборов, таких как, например, цифровые фотокамеры. Конструкция разъемов для USB рассчитана на многократное сочленение/расчленение.
Возможность использования только двух скоростей обмена данными ограничивает применяемость шины, но существенно уменьшает количество линий интерфейса и упрощает аппаратную реализацию. Питание непосредственно от USB возможно только для устройств с малым потреблением, таких как клавиатуры, мыши, джойстики и т.п.