- •I. Основы сопротивления материалов.
- •Внешние силы (нагрузки).
- •1.3 Напряжения
- •1.4 Диаграмма растяжения
- •1.5 Деформация растяжения и сжатия
- •Методика решения практических задач
- •1.6 Деформация сдвига (среза)
- •Деформация смятия
- •Геометрические характеристики сечений
- •Деформация кручения
- •Деформация изгиба
- •1.11. Определение перемещений при изгибе по способу Верещагина
- •1.12. Устойчивость сжатых стержней
- •I I. Основы взаимозаменяемости
- •Шероховатость поверхности
- •Литература
- •I I I Основы теории механизмов и машин (тмм)
- •Структурный анализ механизмов
- •Основные понятия и определения
- •Степень подвижности механизма
- •Замена высших кинематических пар низшими
- •Структурный синтез и анализ механизмов
- •Кинематический анализ механизмов
- •Определение положений и перемещений звеньев механизма
- •Определение скоростей и ускорений точек и звеньев механизма
- •IV Детали машин
- •Зубчатые передачи.
- •Элементы зубчатых колес.
- •Передаточное отношение, передаточное число
- •Силы в зацеплении цилиндрических зубчатых колес
- •Прочностной расчет цилиндрических зубчатых передач
- •Расчет зубьев на контактную прочность
- •Расчет зубьев на изгиб
- •Точность зубчатых передач
- •Степень точности по гост 1643-81 – 7-с
- •Степень точности по гост 1643-81 – 6- 7-7-е, это значит, что степень точности по норме кинематической точности – 6, а по нормам плавности работы и контакта зубьев –7.
- •Способы (методы) нарезания зубьев
- •Метод (способ) копирования (рис.4.6)
- •Способ (метод) обкатки
- •Передачи коническими зубчатыми колесами
- •Пример выполнения чертежа зубчатого колеса (рис. 4.9).
- •Червячные передачи
- •Фрикционные передачи
- •Ременные передачи
- •Плоскоременные передачи
- •Шкивы плоскоременных передач
- •Клиноременные передачи
- •Последовательность расчета
- •Цепные передачи
- •Оси и валы
- •Подшипники качения
- •Резьбы: типы и обозначения
- •Болтовые соединения
- •Выбор электродвигателя и кинематический расчет привода
Подшипники качения
Подшипники качения состоят из наружного и внутреннего колец с дорожками качения; тел качения (шариков или роликов); сепаратора, разделяющего и направляющего шарики или ролики. В некоторых подшипниках отсутствует одно или оба кольца, а в других – сепаратор.
Достоинства подшипников качения: малые моменты сил трения и пусковые моменты, малый нагрев, незначительный расход смазочных материалов, простое обслуживание.
Недостатки подшипников качения: ограниченная способность воспринимать ударные и динамические нагрузки; большие габариты по диаметру (в сравнении с подшипниками скольжения).
В зависимости от направления нагрузки различают подшипники: радиальные, воспринимающие только радиальную или радиальную и некоторую осевую нагрузку; упорные, воспринимающие только осевую нагрузку; радиально-упорные и упорно-радиальные, способные воспринимать радиальную и осевую нагрузку одновременно.
По грузоподъемности (при одинаковом внутреннем диаметре) подшипники разделяются на серии: по радиальным габаритным размерам – сверхлегкие, особо легкие, легкие, средние, тяжелые; по ширине –узкие, нормальные, широкие, особо широкие.
Внутренние диаметры подшипников условно разделены на 3 диапазона: 1…9 мм; 10…17 мм; ≥ 20 мм.
На рис.4.30 показаны наиболее распространенные типы подшипников.
Р
адиальный
шариковый (рис.4.30 а) – воспринимает в
основном радиальную нагрузку, но
допускает и осевую нагрузку P ≤ 0,25R .
Радиально-упорный шариковый (рис. 4.30,
б) работает при радиальной и осевой
нагрузке в соотношениии
Рис. 4.30 P ≤ 0,75R при α ≥ 260, где α – угол контакта
(α = 120; 240; 260; 350; 360). Шариковый упорный (рис. 4.30,в) воспринимает только осевую нагрузку. На рис. 4.30, г, д, е показаны роликовые подшипники. Грузоподъемность роликовых подшипников на 70…90% выше грузоподъемности шариковых подшипников, но они уступают шариковым по КПД ( трение больше) и по предельным скоростям вращения.
Роликовый радиальный с короткими цилиндрическими роликами
(рис. 4.30, г) и с длинными игольчатыми роликами (рис. 4.30, д) воспринимают только радиальную нагрузку. Роликовый конический радиально-упорный (рис. 4.30, е) воспринимает одновременно значительные радиальную и осевую нагрузки.
Подшипники маркируются номерами. Расшифровка номера производится справа налево. Первые две цифры (d ≥ 10 мм) или одна цифра (d = 1…9 мм) характеризуют внутренний диаметр подшипника; 3-я цифра или 2-я цифра (при d = 1…9 мм) указывает серию подшипника; 4-я цифра представляет тип подшипника. Цифр в номере подшипников может быть и больше 4-х. Цифры, начиная с 5-й, характеризуют конструктивные разновидности подшипников.
Примеры расшифровки подшипников по номерам.
№ 29 – d = 9 мм; серия легкая (цифра 2); радиальный шариковый (3-ей цифры нет или 0). № 36102 – d = 15 мм; серия особо легкая (цифра 1); шариковый радиально-упорный (цифра 6); угол контакта α = 120 (цифра 3).
№ 8308 – d = 40 мм; серия средняя (цифра 3); шариковый упорный (цифра 8).
№ 2505 – d = 25 мм; серия легкая широкая (цифра 5); роликовый радиальный с короткими цилиндрическими роликами (цифра 2). № 4074907 – d = 35 мм; серия сверхлегкая (цифра 9); роликовый радиальный с длинными игольчатыми роликами (цифра 4); остальные цифры – конструктивные разновидности.
№ 7612 – d = 60 мм; серия средняя широкая (цифра 6); роликовый конический радиально-упорный (цифра 7).
Для подшипников d ≥ 20 мм внутренний диаметр определяется
d = 2-е правые цифры, умноженные на 5 (см. примеры).
В маркировке подшипников перед номером через дефис указывается класс точности (кроме 0). Классы точности подшипников мы рассматривали в разделе «Основы взаимозаменяемости».
Расчет подшипников качения
Подшипники рассчитываются на долговечность. Расчетная долговечность L в млн. оборотов или Lh в часах определяются по формулам:
L = (С/Рэ)m (4.44)
Lh = 106 L/(60n) (4.45)
Здесь С – динамическая грузоподъемность подшипника (принимается по каталогу подшипников); Рэ – эквивалентная нагрузка на подшипник;
n – частота вращения вала, об/мин.
Эквивалентная нагрузка Рэ для однорядных радиальных шарикоподшипников и радиально-упорных шарико- и роликоподшипников
Рэ = (XVFr + YFa)KбKт (4.46)
Для радиальных подшипников с короткими цилиндрическими роликами
Рэ = VFr KбKт (4.47)
Для упорных шариковых и роликовых подшипников
Рэ = Fа KбKт (4.48)
Здесь Х – коэффициент радиальной нагрузки; V – коэффициент, учитывающий вращение колец; при вращении внутреннего кольца V = 1,0 , наружного кольца V = 1,2; Fr – радиальная нагрузка, Н; Y – коэффициент осевой нагрузки;
Fa – осевая сила, Н; Kт – температурный коэффициент; Kб – коэффициент безопасности.
Коэффициенты Х и Y зависят от соотношения Fa/( V* Fr) и е – параметр осевого нагружения. Параметр е выбирается по таблицам и зависит от отношения Fa/С0, где С0 – статическая грузоподъемность (принимается по каталогу).
Для радиальных и радиально-упорных шариковых подшипников при
Fa/( V* Fr) ≤ е принимают Х = 1, Y = 0.
При Fa/( V* Fr) ≥ е Х и Y выбираются по таблицам, приведенным в каталогах подшипников и в литературе по деталям машин.
Долговечность подшипников должна соответствовать ресурсу изделия, но не меньше 5000 часов.
