
- •I. Основы сопротивления материалов.
- •Внешние силы (нагрузки).
- •1.3 Напряжения
- •1.4 Диаграмма растяжения
- •1.5 Деформация растяжения и сжатия
- •Методика решения практических задач
- •1.6 Деформация сдвига (среза)
- •Деформация смятия
- •Геометрические характеристики сечений
- •Деформация кручения
- •Деформация изгиба
- •1.11. Определение перемещений при изгибе по способу Верещагина
- •1.12. Устойчивость сжатых стержней
- •I I. Основы взаимозаменяемости
- •Шероховатость поверхности
- •Литература
- •I I I Основы теории механизмов и машин (тмм)
- •Структурный анализ механизмов
- •Основные понятия и определения
- •Степень подвижности механизма
- •Замена высших кинематических пар низшими
- •Структурный синтез и анализ механизмов
- •Кинематический анализ механизмов
- •Определение положений и перемещений звеньев механизма
- •Определение скоростей и ускорений точек и звеньев механизма
- •IV Детали машин
- •Зубчатые передачи.
- •Элементы зубчатых колес.
- •Передаточное отношение, передаточное число
- •Силы в зацеплении цилиндрических зубчатых колес
- •Прочностной расчет цилиндрических зубчатых передач
- •Расчет зубьев на контактную прочность
- •Расчет зубьев на изгиб
- •Точность зубчатых передач
- •Степень точности по гост 1643-81 – 7-с
- •Степень точности по гост 1643-81 – 6- 7-7-е, это значит, что степень точности по норме кинематической точности – 6, а по нормам плавности работы и контакта зубьев –7.
- •Способы (методы) нарезания зубьев
- •Метод (способ) копирования (рис.4.6)
- •Способ (метод) обкатки
- •Передачи коническими зубчатыми колесами
- •Пример выполнения чертежа зубчатого колеса (рис. 4.9).
- •Червячные передачи
- •Фрикционные передачи
- •Ременные передачи
- •Плоскоременные передачи
- •Шкивы плоскоременных передач
- •Клиноременные передачи
- •Последовательность расчета
- •Цепные передачи
- •Оси и валы
- •Подшипники качения
- •Резьбы: типы и обозначения
- •Болтовые соединения
- •Выбор электродвигателя и кинематический расчет привода
Пример выполнения чертежа зубчатого колеса (рис. 4.9).
Рис. 4.9
Трение
Трение – это совокупность явлений, возникающих в месте контакта двух тел, которые препятствуют их любому относительному движению.
Различают два вида трения: трение покоя (нет относительного движения тел); трение движения (есть относительное движение тел). Трение движения разделяется на трение скольжения и трение качения.
Сила трения – это сила, препятствующая относительному перемещению двух тел при трении. Между силой трения F и нормальной составляющей реакций на внешнее воздействие N существует зависимость
F = f* N, (4.18)
где f – коэффициент трения, определяемый опытным путем и зависящий от условий контакта тел.
Вы наверняка замечали, что сдвинуть груз с места труднее, чем двигать его после трогания с места. Поэтому различают силу трения покоя Fп и силу трения движения F.
Соответственно, следует различать коэффициент трения покоя
f п = Fп/ N (4.19)
и коэффициент трения движения
f = F/ N (4.20)
Как правило f п > f
Рассмотрим перемещение груза по горизонтальной (рис.4.10, а) и наклонной (рис.4.10, б, в) плоскостям.
Рис. 4.10
Из рис.4.10, а) видим, что сила трения F отклоняет реакцию N на угол φ. Чтобы передвинуть груз надо приложить силу P ≥ F .
f = F/ N = tq φ. φ = arctq(f) (4.21)
– называется углом трения. При перемещении груза по наклонной плоскости (рис.4.10, б, в) реакцию Fа = Q отклоняет не только сила трения, но и составляющая силы тяжести, вызванная наклоном груза. В результате возникает сила сопротивления Ft = Fa*tq(φ + α) – при движении вверх; Ft = Fa*tq(φ - α) – при движении вниз.
Из рисунка 4.10, в) видим, что при отсутствии внешней силы P, пока угол трения φ > α груз не будет самопроизвольно перемещаться вниз. Условие φ > α называется условием самоторможения. При φ = α груз находится в состоянии безразличного равновесия.
Коэффициент трения скольжения зависит от многих факторов: материалов тел; вида и характера смазки; конфигурации тел; шероховатости контактирующих поверхностей и др. С учетом этих факторов общее понятие – коэффициент трения, заменяют понятием – приведенный коэффициент трения. А в формулах заменяют f = tq φ на f ' = tq φ', где φ' – приведенный угол трения.
Т
рение
качения
При качении круглого тела по поверхности, из за деформации контактирующих тел, нормальная составляющая сил N смещается в сторону движения на величину k (рис.4.11), называемую коэффициентом трения качения и имеющую размерность см. При этом возникает момент трения равный
Tk = N*k (4.22)
Рис. 4.11
Для стального колеса, катящегося по рельсу k ≈ 0,005 см; для ролика или шарика, катящегося по закаленной дорожке подшипника качения,
k = 0,0005…0,001 см.
В механизмах и машинах потери на трение качения значительно меньше, чем на трение скольжения.
Поэтому, там, где это возможно, заменяют трение скольжения на трение качения. Например, в некоторых кулачковых механизмах, чтобы убрать трение скольжения толкателя по кулачку, на конце толкателя устанавливают ролик.
Приведенные выше понятия и формулы нужны при расчете червячных передач; фрикционных передач и механизмов; резьбовых соединений и др.