
- •I. Основы сопротивления материалов.
- •Внешние силы (нагрузки).
- •1.3 Напряжения
- •1.4 Диаграмма растяжения
- •1.5 Деформация растяжения и сжатия
- •Методика решения практических задач
- •1.6 Деформация сдвига (среза)
- •Деформация смятия
- •Геометрические характеристики сечений
- •Деформация кручения
- •Деформация изгиба
- •1.11. Определение перемещений при изгибе по способу Верещагина
- •1.12. Устойчивость сжатых стержней
- •I I. Основы взаимозаменяемости
- •Шероховатость поверхности
- •Литература
- •I I I Основы теории механизмов и машин (тмм)
- •Структурный анализ механизмов
- •Основные понятия и определения
- •Степень подвижности механизма
- •Замена высших кинематических пар низшими
- •Структурный синтез и анализ механизмов
- •Кинематический анализ механизмов
- •Определение положений и перемещений звеньев механизма
- •Определение скоростей и ускорений точек и звеньев механизма
- •IV Детали машин
- •Зубчатые передачи.
- •Элементы зубчатых колес.
- •Передаточное отношение, передаточное число
- •Силы в зацеплении цилиндрических зубчатых колес
- •Прочностной расчет цилиндрических зубчатых передач
- •Расчет зубьев на контактную прочность
- •Расчет зубьев на изгиб
- •Точность зубчатых передач
- •Степень точности по гост 1643-81 – 7-с
- •Степень точности по гост 1643-81 – 6- 7-7-е, это значит, что степень точности по норме кинематической точности – 6, а по нормам плавности работы и контакта зубьев –7.
- •Способы (методы) нарезания зубьев
- •Метод (способ) копирования (рис.4.6)
- •Способ (метод) обкатки
- •Передачи коническими зубчатыми колесами
- •Пример выполнения чертежа зубчатого колеса (рис. 4.9).
- •Червячные передачи
- •Фрикционные передачи
- •Ременные передачи
- •Плоскоременные передачи
- •Шкивы плоскоременных передач
- •Клиноременные передачи
- •Последовательность расчета
- •Цепные передачи
- •Оси и валы
- •Подшипники качения
- •Резьбы: типы и обозначения
- •Болтовые соединения
- •Выбор электродвигателя и кинематический расчет привода
Структурный синтез и анализ механизмов
Структурный синтез механизмов является начальной стадией составления схемы механизма, удовлетворяющего заданным условиям. Исходными данными обычно являются виды движения ведущего и рабочего звеньев механизма. Если элементарный трех- или четырехзвенный механизм не решает задачу требуемого преобразования движения, схема механизма составляется путем последовательного соединения нескольких элементарных механизмов.
Основные принципы структурного синтеза и анализа механизмов с КП 5-го класса и классификацию таких механизмов впервые предложил русский ученый Л.В. Ассур в 1914году, а развил идеи Л.В. Ассура академик И.И. Артоболевский. Согласно предложенной классификации механизмы объединяются в классы от первого и выше по структурным признакам. Механизм первого класса состоит из ведущего звена и стойки, соединенных кинематической парой 5-го класса. Механизмы более высоких классов образуются последовательным присоединением к механизму первого класса кинематических цепей, не изменяющих степени подвижности исходного механизма, то есть имеющих степень подвижности, равную нулю. Такая кинематическая цепь называется структурной группой. Поскольку в структурную группу входят только КП 5-го класса, а степень подвижности группы равна нулю, то можно записать
W = 3n - 2P5 = 0, откуда P5 = 3/2 n.
Следовательно, в структурную группу может входить только четное число звеньев, поскольку P5 может быть только целым числом.
Структурные группы различают по классу и порядку. Группа 2-го класса и 2-го порядка состоит из двух звеньев и трех КП. Класс группы (выше 2-го) определяется числом внутренних КП, образующих подвижный замкнутый контур из наибольшего числа звеньев группы.
Порядок группы определяется числом свободных элементов звеньев, которыми группа присоединяется к механизму.
На рис.3.4 показан механизм 1-го класса, а так же структурные группы 2-го и 3-го классов. В результате структурного синтеза (присоединение структурных групп к механизму 1-го класса) получены четырехзвенные механизмы 2-го класса и шестизвенный механизм 3-го класса (рис.3.4).
При структурном анализе определяется степень подвижности механизма и разложение его кинематической цепи на структурные группы и ведущие звенья. При этом удаляются лишние степени свободы (если они есть) и пассивные связи (при их наличии).
Рис. 3.4
Кинематический анализ механизмов
Целью кинематического анализа является изучение движения звеньев механизма независимо от действующих на них сил. При этом принимаются допущения: звенья абсолютно жесткие и в кинематических парах отсутствуют зазоры.
Решаются следующие основные задачи: а) определение положений звеньев и построение траекторий движения отдельных точек или звеньев в целом; б) нахождение линейных скоростей точек механизма и угловых скоростей звеньев; в) определение линейных ускорений точек механизма и угловых ускорений звеньев.
Исходными данными являются: кинематическая схема механизма; размеры всех звеньев; законы движения ведущих звеньев.
При кинематическом анализе механизмов используются аналитические, графоаналитические и графические методы. Обычно рассматривается полный цикл движения механизма.
Результаты кинематического анализа позволяют при необходимости скорректировать схему механизма, кроме того, они необходимы для решения задач динамики механизма.