- •1. Общие принципы организации системы ввода-вывода.
- •1.3.1 Организация свв универсальных эвм
- •1.3.2 Организация свв управляющих эвм
- •1.3.2.1 Порты ввода-вывода
- •1.3.2.2 Дискретные порты ввода-вывода
- •1.3.2.3 Однонаправленные порты
- •1.3.2.4 Двунаправленные порты и порты с альтернативной функцией
- •1.3.2.5 Аналого-цифровой преобразователь
- •1.3.2.6 Цифро-аналоговый преобразователь
- •1.3.2.7 Устройства сопряжения с объектом (усо) управляющих эвм
- •3 Аппаратные интерфейсы вычислительных систем
- •3.1 Характеристики аппаратных интерфейсов
- •3.2 Функции аппаратных интерфейсов
- •3.3 Классификация аппаратных интерфейсов
- •1.2.1 Процессор и память
- •1.2.2 Контроллер ввода-вывода
- •1.2.3 Процессор ввода-вывода
- •3.6 Внутрисистемный интерфейс amba
- •3.6.1 Внутрисистемный интерфейс amba ahb
- •3.6.2 Системный интерфейс amba asb
- •3.6.3 Периферийный интерфейс amba apb
- •3.3 Классификация аппаратных интерфейсов
- •3.7 Системные интерфейсы
- •3.7.1 Интерфейс pci
- •3.7.2 Интерфейс pci Express
- •3.9 Малые периферийные интерфейсы
- •3.9.1 Интерфейс rs-232
- •3.9.1.1 Сигнальные линии последовательного интерфейса
- •3.9.1.2 Управление потоком
- •3.9.1.3 Разъемы и кабели
- •3.9.1.4 Формат последовательной передачи данных
- •3.9.1.5 Работа с последовательным каналом
- •3.9.2 Интерфейс spi
- •3.9.2.1 Типы подключения к шине spi
- •3.9.2.2 Режимы работы шины spi
- •3.9.2.3 Достоинства шины spi
- •3.9.2.4 Недостатки шины spi
- •3.9.3 Интерфейс Centronics
- •3.9.4 Интерфейс sata
- •3.9.4.1 Физический интерфейс Serial ata
- •3.5.7 Приемопередатчик последовательного интерфейса
- •3.5.8 Особенности параллельных интерфейсов
- •1.3.2.7 Устройства сопряжения с объектом (усо) управляющих эвм
- •1.3.2.1 Порты ввода-вывода
- •1.3.2.2 Дискретные порты ввода-вывода
- •1.3.2.3 Однонаправленные порты
- •1.3.2.4 Двунаправленные порты и порты с альтернативной функцией
- •3.10.3.6 Синхронизация
- •3.9.2 Интерфейс spi
- •3.9.2.1 Типы подключения к шине spi
- •3.9.2.2 Режимы работы шины spi
- •3.9.2.3 Достоинства шины spi
- •3.9.2.4 Недостатки шины spi
- •3.10.3Интерфейс i2c
- •3.10.3.1 Концепция шины i2c
- •3.10.3.2 Реализация монтажного и и монтажного или
- •3.10.3.3 Принцип работы шины i2c
- •3.10.3.4 Сигналы старт и стоп
- •3.10.3.5 Подтверждение
- •3.10.3.6 Синхронизация
- •3.10.3.7 Форматы обмена данными по шине i2c (7-битный адрес)
- •3.10.3.8 Арбитраж
- •3.10.3.9 Достоинства шины i2c
- •3.10.4Интерфейс usb
- •3.10.4.1 Модель передачи данных
- •3.10.4.2 Протокол
- •1.3.2.5 Аналого-цифровой преобразователь
- •1.3.2.6 Цифро-аналоговый преобразователь
- •3.5.10Устройства гальванической изоляции в аппаратных интерфейсах
- •3.5.10.1 Dc/dc преобразователи
- •3.5.10.2 Реализация гальванической изоляции дискретного выхода модуля ввода-вывода sdx-09
- •3.5.10.3 Реализация гальванической изоляции дискретного входа модуля ввода-вывода sdx-09
- •3.5.10.4 Реализация гальванической изоляции rs-232 в контроллере
- •3.5.10.5 Технология iCoupler фирмы Analog Devices
3.5.10.5 Технология iCoupler фирмы Analog Devices
Изоляторы iCoupler – это устройства гальванической развязки на основе трансформаторов, выполненных на кристалле кремния; эти трансформаторы играют ту же роль, что и пара светодиод/фотодиод в оптопаре. Планарный трансформатор изготовлен в ходе технологического процесса КМОП на этапе металлизации и имеет ещѐ один дополнительный слой осажденного золота. Одну «обмотку» трансформатора от другой изолирует слой электрически прочного синтетического полимера (полиимида). Эти две «обмотки» подключены к быстродействующим КМОП-схемам, которые обеспечивают интерфейс между трансформатором и внешними сигналами. Микроэлектронная технология дает возможность с минимумом затрат осуществить интеграцию нескольких каналов цифровой изоляции и других электронных схем в одном корпусе. Устройства iCoupler не имеют таких присущих оптопарам недостатков, как неопределенный коэффициент передачи тока, нелинейная передаточная функция и дрейф (температурный и временной); кроме того, устройство iCoupler позволяет уменьшить энергопотребление на 90% и для его работы не требуется внешних драйверов и дискретных компонентов.
108
Электрическая схема, подключенная к первичной «обмотке» трансформатора, преобразует переходы входного сигнала в импульсы длительностью 1 нс, эти импульсы подаются на трансформатор; схема, подключенная ко вторичной «обмотке», принимает эти импульсы и восстанавливает входной сигнал. Схема обновления сигнала (refresh) на входной стороне обеспечивает корректность выходного сигнала, даже если входной сигнал не меняет свое состояние. Это важно в ситуации включения питания, а также при передаче данных с низкой скоростью или при передаче постоянного сигнала.
Рис. 56. Устройство и поперечное сечение изолятора iCoupler.
Так как назначение устройства iCoupler заключается в изоляции входа от выхода, входная и выходная схемы располагаются на различных кристаллах. Собственно трансформатор может быть расположен или на одном из этих кристаллов, или на третьем кристалле. Все кристаллы располагаются в стандартном пластиковом корпусе, в таких корпусах выпускаются многие современные микросхемы.
Особенностью многоканальных устройств iCoupler является наличие в одном корпусе каналов на передачу и на прием. Сами трансформаторы могут передавать сигнал в любую сторону, направление определяется схемами, подключенными к трансформатору. Поэтому многоканальные изоляторы поставляются с различными конфигурациями (с различными сочетаниями направлений передачи).
Примеры реализации гальванической изоляции различных интерфейсов при помощи изоляторов iCoupler демонстрируется на рисунках ниже.
109
Рис. 57. Использование микросхемы ADuM1400 для реализации гальванической изоляции в интерфейсе
RS-232.
Рис. 58. Реализация гальванической изоляции в интерфейсе RS-485 с полным дуплексом.
110
Рис. 59. Гальваническая изоляция интерфейса I2C на базе ADuM 1250.
