- •1. Общие принципы организации системы ввода-вывода.
- •1.3.1 Организация свв универсальных эвм
- •1.3.2 Организация свв управляющих эвм
- •1.3.2.1 Порты ввода-вывода
- •1.3.2.2 Дискретные порты ввода-вывода
- •1.3.2.3 Однонаправленные порты
- •1.3.2.4 Двунаправленные порты и порты с альтернативной функцией
- •1.3.2.5 Аналого-цифровой преобразователь
- •1.3.2.6 Цифро-аналоговый преобразователь
- •1.3.2.7 Устройства сопряжения с объектом (усо) управляющих эвм
- •3 Аппаратные интерфейсы вычислительных систем
- •3.1 Характеристики аппаратных интерфейсов
- •3.2 Функции аппаратных интерфейсов
- •3.3 Классификация аппаратных интерфейсов
- •1.2.1 Процессор и память
- •1.2.2 Контроллер ввода-вывода
- •1.2.3 Процессор ввода-вывода
- •3.6 Внутрисистемный интерфейс amba
- •3.6.1 Внутрисистемный интерфейс amba ahb
- •3.6.2 Системный интерфейс amba asb
- •3.6.3 Периферийный интерфейс amba apb
- •3.3 Классификация аппаратных интерфейсов
- •3.7 Системные интерфейсы
- •3.7.1 Интерфейс pci
- •3.7.2 Интерфейс pci Express
- •3.9 Малые периферийные интерфейсы
- •3.9.1 Интерфейс rs-232
- •3.9.1.1 Сигнальные линии последовательного интерфейса
- •3.9.1.2 Управление потоком
- •3.9.1.3 Разъемы и кабели
- •3.9.1.4 Формат последовательной передачи данных
- •3.9.1.5 Работа с последовательным каналом
- •3.9.2 Интерфейс spi
- •3.9.2.1 Типы подключения к шине spi
- •3.9.2.2 Режимы работы шины spi
- •3.9.2.3 Достоинства шины spi
- •3.9.2.4 Недостатки шины spi
- •3.9.3 Интерфейс Centronics
- •3.9.4 Интерфейс sata
- •3.9.4.1 Физический интерфейс Serial ata
- •3.5.7 Приемопередатчик последовательного интерфейса
- •3.5.8 Особенности параллельных интерфейсов
- •1.3.2.7 Устройства сопряжения с объектом (усо) управляющих эвм
- •1.3.2.1 Порты ввода-вывода
- •1.3.2.2 Дискретные порты ввода-вывода
- •1.3.2.3 Однонаправленные порты
- •1.3.2.4 Двунаправленные порты и порты с альтернативной функцией
- •3.10.3.6 Синхронизация
- •3.9.2 Интерфейс spi
- •3.9.2.1 Типы подключения к шине spi
- •3.9.2.2 Режимы работы шины spi
- •3.9.2.3 Достоинства шины spi
- •3.9.2.4 Недостатки шины spi
- •3.10.3Интерфейс i2c
- •3.10.3.1 Концепция шины i2c
- •3.10.3.2 Реализация монтажного и и монтажного или
- •3.10.3.3 Принцип работы шины i2c
- •3.10.3.4 Сигналы старт и стоп
- •3.10.3.5 Подтверждение
- •3.10.3.6 Синхронизация
- •3.10.3.7 Форматы обмена данными по шине i2c (7-битный адрес)
- •3.10.3.8 Арбитраж
- •3.10.3.9 Достоинства шины i2c
- •3.10.4Интерфейс usb
- •3.10.4.1 Модель передачи данных
- •3.10.4.2 Протокол
- •1.3.2.5 Аналого-цифровой преобразователь
- •1.3.2.6 Цифро-аналоговый преобразователь
- •3.5.10Устройства гальванической изоляции в аппаратных интерфейсах
- •3.5.10.1 Dc/dc преобразователи
- •3.5.10.2 Реализация гальванической изоляции дискретного выхода модуля ввода-вывода sdx-09
- •3.5.10.3 Реализация гальванической изоляции дискретного входа модуля ввода-вывода sdx-09
- •3.5.10.4 Реализация гальванической изоляции rs-232 в контроллере
- •3.5.10.5 Технология iCoupler фирмы Analog Devices
3.6.2 Системный интерфейс amba asb
AMBA ASB (Advanced System Bus) является системным интерфейсом и предназначен для использования в высокопроизводительных 16- и 32- разрядных микроконтроллерах. Интерфейс позволяет связать процессор, встроенную и внешнюю память. В AMBA ASB заложена тестовая инфраструктура. AMBA ASB использовался в микроконтроллерах с процессорными ядрами ARM7TDMI, ARM 920 и ARM940. В настоящее время этот интерфейс используется сравнительно редко, вместо него обычно используют более производительный AMBA AHB.
В AMBA ASB поддерживается множество ведущих устройств и пакетная передача. Шина ASB является более простой, по сравнению с AMBA AHB. Коренными отличиями является двусторонняя шина данных (в AHB для данных есть отдельные шины, предназначенные для записи и чтения), более узкая шина данных (32 разряда), не поддерживается раздельная (SPLIT) передача данных.
Рис. 74. Типичная система, построенная на базе AMBA ASB.
124
Система с шиной AMBA ASB (AHB) обычно содержит следующие компоненты:
ASB-ведущий (мастер). Мастер инициирует операции чтения и записи посредством подачи адреса и управляющих сигналов. Только один мастер в определенный момент времени может быть активным.
ASB-ведомый (слейв). Ведомый отвечает на операции чтения и записи в заданном адресном пространстве. Ведомый сигнализирует активному мастеру в случае успешного, ошибочного обмена данными или в случае ожидания.
ASB-дешифратор. Выполняет дешифровку адресов и выбирает соответствующего ведомого. Дешифратор также гарантирует, что шина остается в рабочем состоянии, когда никакого обмена не производится.
ASB-арбитр. Арбитр гарантирует, что только одному мастеру в данный момент времени позволяется инициировать обмен данными. И хотя протокол разрешения доступа к общей шине зафиксирован, любой алгоритм разрешения конфликтов может быть реализован в зависимости от требований области применения.
В шине возможны три основных состояния:
NONSEQUENTIAL (N-TRAN)– используется для одиночных передач или первой передачи данных в пакете.
SEQUENTIAL (S-TRAN) – используется при пакетной передаче данных.
ADDRESS-ONLY – используется, если нет необходимости в передаче данных.
125
Рис. 75. Одиночная (NONSEQUENTIAL) передача данных.
Рассмотрим основные сигналы шины: BCLK – сигнал тактового генератора. BD[31:0] – шина данных.
BA[31:0] – шина адреса.
BWRITE – сигнал запись/чтение.
BTRAN[1:0] – тип передачи (NONSEQUENTIAL, SEQUENTIAL,
ADDRESS-ONLY).
BSIZE[1:0] – размер передаваемых данных. DSELx – выбор устройства.
Рассмотрим взаимодействие нескольких главных устройств через арбитр шины:
Главное устройство выставляет сигнал AREQx, означающий запрос на захват шины.
Арбитр считывает запрос от главного устройства.
Если сигнал BLOCK пассивен, то арбитр разрешает захват шины главному устройству, выставляя сигнал AGNTx. В противном случае, если сигнал BLOCK активен, разрешение на захват шины не выдается.
126
Рис. 76. Арбитраж в мультимастерном режиме работы шины AMBA ASB.
Интерфейс подчиненного устройства на шине AMBA ASB имеет следующий вид:
Рис. 77. Интерфейс подчиненного устройства для AMBA ASB.
