
- •12. Теорема – необходимое условие линейной независимости решений линейного однородного дифференциального уравнения.
- •13.Теорема о структуре общего решения линейного однородного дифференциального уравнения.
- •14.Теорема о структуре общего решения линейного неоднородного дифференциального уравнения.
- •15. Метод вариации произвольных постоянных.
- •16.Линейные однородные дифференциальные уравнения с постоянными коэффициентами (для 2-го порядка).
- •Уравнение второго порядка
- •17.Линейные однородные дифференциальные уравнения с постоянными коэффициентами (для n-го порядка).
- •Уравнение порядка n
- •18.Неоднородные дифференциальные уравнения с постоянными коэффициентами и правой частью специального вида.
- •19.Системы дифференциальных уравнений. Нормальная система дифференциальных уравнений. Задача Коши. Решение системы дифференциальных уравнений методом исключения. Пример.
- •Примеры нормальных форм
- •Различные постановки задачи Коши
- •Теоремы о разрешимости задачи Коши для оду
- •Метод исключения — сведение системы ду к одному уравнению
- •20.Комплексные числа. Алгебраическая, тригонометрическая и показательная формы.
- •Определения
- •Стандартная модель
- •Связанные определения
- •Модуль и аргумент
- •Сопряжённые числа
- •Представление комплексных чисел Алгебраическая форма
- •Тригонометрическая и показательная формы
20.Комплексные числа. Алгебраическая, тригонометрическая и показательная формы.
Ко́мпле́ксные чи́сла —
расширение множества вещественных
чисел,
обычно обозначается
.
Любое комплексное число может быть
представлено как формальная сумма x + iy,
где x и y —
вещественные числа, i — мнимая
единица.
Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других.
Определения
Поле
комплексных чисел можно понимать
как расширение
поля вещественных
чисел, в котором многочлен z2 +
1 имеет
корень. Следующие две
элементарные моделипоказывают,
что непротиворечивое построение такой
системы чисел возможно. Оба приведенных
определения приводят к изоморфным расширениям
поля вещественных чисел
,
как и любые другие конструкции поля
разложения многочлена z2 +
1.
Стандартная модель
Комплексное число z можно определить как упорядоченную пару вещественных чисел (x,y). Введём операции сложения и умножения таких пар следующим образом:
Вещественные
числа являются в этой модели подмножеством
множества комплексных чисел и представлены
парами вида
,
причём операции с такими парами
согласованы с обычными сложением и
умножением вещественных чисел. Ноль
представляется парой
единица
—
а мнимая
единица —
На
множестве комплексных чисел ноль и
единица обладают теми же свойствами,
что и на множестве вещественных, а
квадрат мнимой единицы, как легко
проверить, равен
,
то есть −
1.
Несложно показать, что определённые выше операции имеют те же свойства, что и аналогичные операции с вещественными числами. Исключением являются только свойства, связанные с отношением порядка (больше-меньше), потому что расширить порядок вещественных чисел, включив в него все комплексные числа так, чтобы операции по-прежнему были согласованы с порядком, невозможно.
Действия над комплексными числами
Сравнение
a + bi = c + di означает, что a = c и b = d (два комплексных числа равны между собой тогда и только тогда, когда равны их действительные и мнимые части).
Сложение
(a + bi) + (c + di) = (a + c) + (b + d)i.
Вычитание
(a + bi) − (c + di) = (a − c) + (b − d)i.
Умножение
Деление
Связанные определения
Модуль, аргумент, вещественная и мнимая части
Пусть
—
комплексное число, где
и
— вещественные
числа.
Числа
или
и
или
называются
соответственно вещественной и мнимой (аналогично англ. real,
imaginary)
частями z.
Если x = 0, то z называется мнимым или чисто мнимым числом.
Если y = 0, то z является действительным (вещественным) числом.