
- •1.Степени окисления элементов, их связь с положением элементов в Периодической системе. Классы неорганических соединений, номенклатура неорганических соединений.
- •2. Планетарная модель атома водорода Резерфорда; постулаты Бора.
- •3. Уравнение Де-Бройля, корпускулярно-волновые свойства микрообъектов (дуализм), принцип неопределенности Гейзенберга
- •5. Электронное строение многоэлектронных атомов. Порядок заполнения орбиталей многоэлектронных атомов: принцип Паули, правило Хунда; s-, p-, d-элементы. Полные и неполные электронные аналоги.
- •6. Форма и пространственное расположение s-, p- и d- орбиталей в атоме.
- •7. Радиусы атомов, их изменение в периодах и группах Периодической системы. Зависимость кислотно-основных свойств соединения от радиуса центрального атома.
- •8. Энергия ионизации; сродство к электрону. Изменение в периодах и группах Периодической системы.
- •9. Электроотрицательность атомов элементов. Относительная электроотрицательность. Изменение в периодах и группах Периодической системы. Полярность химической связи, полярность молекул и ионов.
- •11. Ковалентная химическая связь. Особенности ковалентной связи: направленность и насыщаемость (приведите примеры).
- •12. Понятие о гибридизации атомных орбиталей и его применение для описания конфигурации молекул и ионов. Приведите примеры соединений.
- •13. Теория отталкивания σ-связывающих и неподелённых электронных пар и её применение для описания геометрической конфигурации молекул и ионов.
- •14. Структура Периодической системы элементов: периоды, группы, подгруппы, вставные декады. Взаимосвязь между электронной структурой атомов элементов и их положением в Периодической системе.
- •15. Валентные возможности атомов элементов в химических соединениях.
- •16.Газообразное и конденсированное состояния. Валентные и невалентные (ван-дер-ваальсовые) силы сцепления. Водородная связь.
- •17. Термохимические уравнения. Тепловой эффект и изменение стандартной энтальпии химической реакции.
- •18. Закон Гесса и следствия из него. Применение закона Гесса для расчёта изменения энтальпии химических реакций.
- •19. Стандартная энтропия веществ. Изменение энтропии при изменениях агрегатного состояния вещества. Расчёт изменения стандартной энтропии химической реакции.
- •20. Понятие о скорости химической реакции. Факторы, влияющие на скорость реакции в гомогенных и гетерогенных системах. Закон действующих масс.
- •21. Факторы, влияющие на скорость химической реакции. Энергия активации химической реакции как потенциальный барьер реакции
- •22. Динамический характер химического равновесия Расчет констант химического равновесия, исходные и равновесные концентрации
- •23. Смещение химического равновесия при изменении концентраций реагентов, давления, температуры. Принцип Ле-Шателье.
- •25. Электролитическая диссоциация веществ в растворах. Кислоты, основания, амфотерные гидроксиды, соли. Сильные и слабые электролиты.
- •26. Роль молекул растворителя в процессах электролитической диссоциации. Аквокомплексы металлов, их кислотные свойства.
- •27. Электролитическая диссоциация сильных и слабых электролитов в водных растворах. Вычисление концентраций ионов.
- •28. Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель.
- •29. Основные положения теорий кислот и оснований Аррениуса и Бренстеда-Лоури. Зависимость кислотно-основных свойств соединений от степени окисления центрального иона.
- •30. Амфотерность гидроксидов с точки зрения теории электролитической диссоциации (приведите примеры).
- •31. Равновесия в насыщенных растворах малорастворимых солей. Расчёт растворимости малорастворимой соли. Способы увеличения растворимости малорастворимых солей.
19. Стандартная энтропия веществ. Изменение энтропии при изменениях агрегатного состояния вещества. Расчёт изменения стандартной энтропии химической реакции.
Стандартная энергия Гиббса образования ΔGо298 некоторых веществ
Вещество |
Состояние |
ΔGо298, кДж/моль |
Вещество |
Состояние |
ΔGо298, кДж/моль |
BaCO3 |
к |
-1138,8 |
FeO |
к |
-244,3 |
CaCO3 |
к |
-1128,75 |
H2O |
ж |
-237,19 |
Fe3O4 |
к |
-1014,2 |
H2O |
г |
-228,59 |
BeCO3 |
к |
-944,75 |
PbO2 |
к |
-219,0 |
СаО |
к |
-604,2 |
CO |
г |
-137,27 |
ВеО |
к |
-581,61 |
CH4 |
г |
-50,79 |
ВаО |
к |
-528,4 |
NO2 |
г |
+51,79 |
СО2 |
г |
-394,38 |
NO |
г |
+86,69 |
NaCl |
к |
-384,03 |
C2H2 |
г |
+209,20 |
20. Понятие о скорости химической реакции. Факторы, влияющие на скорость реакции в гомогенных и гетерогенных системах. Закон действующих масс.
Скорость химической реакции — изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики. Скорость химической реакции — величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение помножается на −1.
Например для реакции:
выражение для скорости будет выглядеть так:
.
Зако́нде́йствующих масс устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии, а также зависимость скорости химической реакции от концентрации исходных веществ.
21. Факторы, влияющие на скорость химической реакции. Энергия активации химической реакции как потенциальный барьер реакции
Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции: концентрации с, температуры t , присутствия катализаторов, а также от некоторых других факторов (например, от давления - для газовых реакций, от измельчения - для твердых веществ, от радиоактивного облучения).
Энергия активации в элементарных реакциях, минимальная энергия реагентов (атомов, молекул и других частиц), достаточная для того, чтобы они вступили в хим. реакцию, т. е. для преодоления барьера на поверхности потенциальной энергии, отделяющего реагенты от продуктов реакции.
Потенциальный барьер - максимум потенциальной энергии, через который должна пройти система в ходе элементарного акта химического превращения. Высота потенциального барьера для любого пути, проходящего через переходное состояние, равна потенциальной энергии в переходном состоянии.
22. Динамический характер химического равновесия Расчет констант химического равновесия, исходные и равновесные концентрации
Химическое равновесие имеет динамический характер. Это значит, что и прямая и обратная реакции при равновесии не прекращаются.
K= [Km+ ] n [A n- ]m /[knAm]
Расчет равновесных концентраций в р-рах слабых электролитов
Если Ск/К>>100,то [H+] =√ К* Ск
Отсюда [ОH-] = Kw/ [H+]
[H+] = [кисл. ост.] [
В противном случае
[H+] =√(к^2 +4kc) – k/ 2
Отсюда[ОH-] = Kw/ [H+]
[H+] = [кисл. ост.]