
- •1. Економіка, як система грошових і матеріально-енергетичних потоків конверсії природних ресурсів у споживчу вартість.
- •2. Значення дисципліни та її місце в економічній діяльності ( за визначенням Державного класифікатора дк 009-96).
- •4. Сировина та її класифікація. Раціональне використання сировини. Збагачення сировини. Техніко-економічні показники сировини. Комплексне використання сировини.
- •5. Характеристика повітря, його склад, очистка, розподіл, та використання складових в народному господарстві.
- •6. Вода як сировина, її властивост ивості. Промислова водопідготовка.
- •7. Енергоносії та їх характеристика. Енергетичні характеристики енергоносіїв. Поняття про умовне паливо.
- •8. Характеристика систем технологій виробництва енергії в Україні (гес ,тес, аес).Проблеми їх ефективного функціонування
- •9. Значення вимірювання в технології та техніко-економічних розрахунках.
- •10. Метрологія – наука про вимірювання фізичних величин в науці, техніці, економіці.
- •11. Основні поняття та терміни метрології: фізична величина (ф.В.), одиниця ф.В.,розмір ф.В, розмірність ф. В, їх використання в техніко-економічних розрахунках.
- •12. Міжнародна система фізичних величин si та її переваги перед галузевими та національними.
- •13. Використання співвідношень одиниць ф. В. Si та позасистемних в економічних розрахунках (на прикладах).
- •14. Значення міжнародної номенклатури iupac для професійної діяльності економістів-менеджерів.
- •16. Поняття про конверсію видів енергії . Коефіцієнт конверсії енергії.
- •17. Поняття "якість енергії", "конверсія енергії", еколого-економічна доцільність конверсії енергії.
- •18. Загальна характеристика систем чорної металургії.
- •19. Наукові принципи одержання чорних металів.
- •20. Системи технологій одержання чавуну
- •21. Способи виробництва сталі та їх характеристика.
- •22. Основи бездоменного виробництва сталі.
- •23. Техніко-економічні показники виробництва чавуну у доменному процесі.
- •24.Корозія металів . Засоби захисту від корозії, їх екологічне значення .
- •25. Характеристика систем технологій кольорової металургії. (на прикладі технології виробництва алюмінію)
- •26.Технологія в-ва алюмінію.
- •27.Загальна характеристика систем хімічної промисловості.
- •28.Особливості систем технологій хімічної конверсії природного ресурсу у споживчу вартість. Техніко-економічні показники хімічного виробництва. Особливості екологічних проблем хімічної промисловості.
- •29.Добрива та їх класиф. Екологічна еф. Застос. Добрив, засоби боротьби з шкідниками в агропромисловому комплексі.
- •30. Азотні добрива та їх характеристика .
- •31. Типова схема технологічних систем виробництва карбаміду.
- •32. Фосфорні добрива та їх характеристика .
- •33. Типова схема систем технологічних систем виробництва подвійного суперфосфату .
- •34. Особливості екологічних проблем хімічної промисловості.
- •35. Поняття про стехіометричне рівняння як основу хімічної конверсії.
- •36. Закон збереження маси – теоретична основа матеріальних розрахунків в технологічних процесах.
- •37. Закон збереження енергії та його використання для розрахунку енергетичних балансів технологічних процесів. Перший закон термодинаміки.
- •38. Загальна характеристика систем технологій виробництва електричної енергії в Україні.
- •39. Особливості екологічних проблем виробництва електричної енергії на тес, аес, гес.
- •40. Поняття про альтернативні джерела отримання електричної енергії.
- •42. Конструкційні металічні, полімерні та композитні матеріали. Залежність властивостей від елементного складу, структурної будови і технологічної обробки.
- •43. Поняття про комплексні міжгалузеві системи технологій на прикладі галузі хімічної промисловості.
- •44. Поняття про комплексні міжгалузеві системи технологій на прикладі галузі металургійної промисловості.
- •45. Основні технологічні показники типового технологічного обладнання.
- •47.Синергетичний характер науки, техніки і технології на їх розвиток
- •48. Глобальні проблеми урбанізації та шляхи їх вирішення.
- •49. Поняття про технологічний регламент як основний документ матеріального виробництва.
- •50. Особливості технологічних процесів харчової промисловості (на прикладі технології виробництва хліба).
- •51. Визначення густини газів. Визначення V за відомою m, визначення m за відомим V.
- •Економіка, як система грошових і матеріально-енергетичних потоків конверсії природних ресурсів у споживчу вартість.
- •Значення дисципліни та її місце в економічній діяльності ( за визначенням Державного класифікатора дк 009-96).
- •Зміст основних понять та термінів: технологія, технологічний процес, виробничий процес, природний ресурс, сировина, засоби праці, економічна діяльність.
9. Значення вимірювання в технології та техніко-економічних розрахунках.
Вимі́рювання — пізнавальний процес визначення числового значення вимірюваної величини, а також дія, спрямована на знаходження значення фізичної величини дослідним шляхом, порівнюючи її з одиницею вимірювання за допомогою засобів вимірювальної техніки.
Технічні вимірювання — вимірювання що проводяться у промислових умовах і визначаються зазвичай нижчим класом точності засобів вимірювання(ніж.контрольно перевірочні)
Вимірювання грає важливу роль у техніко-економічних і технологічних розрахунках, особливо це важливо для виробництва, технологія якого включає в себе збірку багатьох деталей,які доставляються з різних заводів,бо виміри повинні бути точними. Для єдності виміру існує система сі,вона слугує еталоном для всіх країн.
10. Метрологія – наука про вимірювання фізичних величин в науці, техніці, економіці.
Метрологія— наука про вимірювання фізичних величин, методи досягнення єдності їх одиниць і розмірностей в системі та необхідної точності розміру вимірюваного об’єкта чи явища.
Завдання сучасної метрології: теорія вимірювань, побудова одиниць фізичних величин і систем одиниць; вивчення метрологічних характеристик, перевірка і атестація засобів вимірювання; створення еталонів, методів і засобів вимірювання, зокрема в гірничій справі; обробка сукупностей вимірів, оцінка точності вимірювання тощо.
Історичними етапами в розвитку метрології стали: встановлення еталону метра (Франція, кінець XVIII ст.), створення абсолютної системи одиниць (К. Ґаусс, 1832), підписання міжнародної Метричної конвенції (1875), розробка і встановлення в 1960 р. Міжнародної системи одиниць (SI). Сьогодні метрологічні дослідження окремих країн координуються Міжнародними метрологічними фр. організаціями
11. Основні поняття та терміни метрології: фізична величина (ф.В.), одиниця ф.В.,розмір ф.В, розмірність ф. В, їх використання в техніко-економічних розрахунках.
Фізична величина ― це характеристика фізичних об’єктів та явищ матеріального, які можна виміряти кількісно.
1) ф.в. має двоїстий характер―якісне та кількісне поняття кожного окремого предмету чи явища.
2)одиниця ф.в. ― фіксована за розміром міри відповідної ф.в.
3)розмір ф.в.—кількісна характеристика ф.в. Розмір не залежить від од. вимірювання.
Розмірність ф.в. ― символьне позначення функціональної залежності похідної ф.в. або її одиниці від основних ф.в. в даній системі.
7 основних фізичних величин в системі сі: дожина, маса, час, сила ел. струму, термодинамічна температура,кількість речовини, сила світла. Ці ф.в. незалежні,а всі інші-похідні.
Похідні:часткові,кратні.
12. Міжнародна система фізичних величин si та її переваги перед галузевими та національними.
Міжнародна система одиниць фізичних величин SI була прийнята у 1960 році. До її складу спочатку входило 6 основних фізичних величин, але згодом приєдналася і сьома. Це такі фізичні величини, як довжина — l, маса — m, час — t, термодинамічна температура — Т, сила електричного струму — І, кількість речовини — n, n і сила світла — J.
Серед похідних одиниць SI, яких нині є близько 160, вісімнадцять мають спеціальні найменування, у тім числі шістнадцять названо іменами видатних учених: Ньютон (N), Паскаль (Ра), Беккерель (Bq) та ін.
Відповідно до галузей науки і техніки похідні фізичні величини умовно поділено на групи: простору й часу, механічні, теплові, хімії і термодинаміки, електричні, іонізуючого випромінювання та ін.
Звичайно ж міжнародна система фізичних величин SI має багато переваг перед галузевими та національними системи, наприклад:
— універсальність — охоплення всіх галузей науки, техніки та економіки;
— уніфікація одиниць для всіх видів вимірювань механічних, теплових, електричних, магнітних, акустичних, світлових та ін. величин. Так, замість низки традиційних одиниць роботи і енергії (кгс · м, гс · см, ерг, калорія, електрон-вольт, стенметр та ін.) система SI запроваджує одну універсальну одиницю — джоуль (J; Дж). Замість багатьох одиниць тиску (атмосфера, кгс/см2, кгс/мм2, мм ртутного стовпчика, м водяного стовпа, бар, дин/см2, п’єза та ін.) SI дає тільки одну одиницю — паскаль (Ра; Па);
— когерентність (узгодження, єдність) системи: усі похідні одиниці виводяться з рівнянь зв’язку між величинами, що в них коефіцієнти зв’язку дорівнюють безрозмірній одиниці;
— спрощений запис формул і рівнянь;
— полегшення навчального процесу;
—ліпше взаєморозуміння фахівців різних галузей науки і практики;
—підвищується точність і швидкість вимірювання і розрахунків.
Ці та інші переваги Міжнародної системи SI зумовили її швидке поширення в усьому світі. Більшість розвинутих країн світу, і серед них Франція (фундатор метричної системи 1793 р.), Німеччина, Італія, Іспанія, Японія, Великобританія, США, Австрія, Канада та ін., а також країни, що розвиваються, — Індія, Пакистан, Гана, Шрі-Ланка, Сомалі та інші прийняли рішення про перехід до Міжнародної системи.