- •1. Электрический заряд и его дискретность. Закон сохранения заряда.
- •2. Закон Кулона. Полевая трактовка закона Кулона.
- •3. Напряжённость электрического поля. Принцип суперпозиции.
- •4. Поток вектора напряженности электростатического поля. Теорема Гаусса.
- •5. Работа электростатического поля. Потенциальность электростатического поля.
- •6. Скалярный потенциал. Неоднозначность скалярного потенциала и его нормировка.
- •7. Потенциал точечного заряда, системы точечных зарядов и непрерывного распределения зарядов.
- •8. Связь потенциала электростатического поля с напряжённостью.
- •9. Нахождение электрического поля прямым применением закона Кулона.
- •10. Нахождение электрического поля с использованием теоремы Гаусса.
- •11. Электрическое поле при наличии проводников. Распределение зарядов на поверхности проводника. Поле вблизи поверхности проводника. Электростатическая защита.
- •12. Потенциал проводника. Ёмкость уединённого проводника. Система проводников.
- •13. Конденсаторы и их ёмкость.
- •14. Понятие о методе изображений для решения некоторых электростатических задач.
- •15. Электрическое поле при наличии диэлектриков.
- •16. Диполь в электростатическом поле. Молекулярная картина поляризации диэлектриков.
- •17. Поляризация диэлектриков. Механизмы поляризации. Виды диэлектриков.
- •18. Условия существования электрического тока. Сторонние электродвижущие силы. Источники эдс.
- •19. Закон Ома для замкнутой цепи и участка цепи, содержащего источник эдс.
- •20. Законы Ома и Джоуля-Ленца.
- •21. Правила Кирхгофа.
- •22. Природа носителей заряда в металлах. Классическая теория электропроводности. Зависимость электропроводности от температуры.
- •23. Собственная проводимость полупроводников. Примесная (электронная и дырочная) проводимость. Доноры и акцепторы.
- •24. Механизм электропроводности электролитов.
- •25. Электропроводность газов. Ионизация и рекомбинация ионов. Основные типы газового разряда. Плазменное состояние вещества. Термоэлектронная эмиссия.
- •26. Закон взаимодействия элементов тока. Полевая трактовка законов взаимодействия элементов тока.
- •27. Закон Био-Савара. Вектор магнитной индукции.
- •28. Закон Ампера. Вихревой характер магнитного поля.
- •29. Движение заряжённых частиц в магнитном поле. Сила Лоренца.
- •30. Магнитное поле при наличии магнетиков. Поле элементарного тока. Магнитный момент элементарного тока. Механизмы намагничивания.
- •31. Диамагнетики и парамагнетики. Природа диамагнетизма. Зависимость парамагнитной восприимчивости от температуры. Закон Кюри.
- •32. Закон электромагнитной индукции Фарадея. Правило Ленца.
- •33. Коэффициент индуктивности.
- •34. Явление самоиндукции при замыкании и размыкании электрической цепи.
- •35. Магнитная энергия тока.
- •36. Свободные электрические колебания в колебательном контуре.
- •37. Вынужденные электрические колебания в колебательном контуре.
- •38. Затухающие электрические колебания в колебательном контуре. Цепь с источником переменных сторонних эдс, сопротивлением, ёмкостью и индуктивностью.
- •39. Метод векторных диаграмм.
- •40. Работа и мощность переменного тока.
- •41. Волновые процессы. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Плоские и сферические волны.
- •42. Синусоидальные (гармонические) волны. Уравнение бегущей волны. Длина волны и волновое число. Волновое уравнение. Фазовая скорость. Энергия волны.
- •43. Шкала электромагнитных волн. Оптический диапазон электромагнитных волн. Структура и свойства плоских электромагнитных волн. Энергия электромагнитных волн.
- •44. Интенсивность. Фотометрические понятия и величины. Энергетические и световые фотометрические величины. Эталон силы света. Соотношения между энергетическими и световыми величинами.
- •45. Принцип суперпозиции волн. Стоячие волны. Биения. Экспериментальные исследования стоячих электромагнитных волн.
- •46. Электромагнитная природа света. Когерентность. Явление интерференции.
- •47. Интерференция когерентных точечных источников. Методы осуществления интерференции. Осуществление интерференции по методу деления волнового фронта. Схемы Юнга, Френеля, Ллойда.
- •48. Осуществление интерференции по методу деления амплитуды. Интерференция в тонких плёнках. «Просветление» оптики.
- •49. Принцип Гюйгенса-Френеля. Дифракция. Дифракционная решётка. Условия максимумов и минимумов.
- •50. Отражение света на плоской зеркальной поверхности. Отражение света на сферической зеркальной поверхности.
- •51. Основные понятия и законы геометрической оптики.
- •52. Построение изображения в выпуклом зеркале. Формула сферического зеркала.
- •53. Построение изображения в вогнутом зеркале. Формула сферического зеркала.
- •54. Преломление света на границе раздела двух сред. Закон преломления Снеллиуса.
- •55. Преломление света на сферической поверхности. Формула тонкой линзы.
- •56. Оптические приборы; лупа, микроскоп, телескоп. Оптическая схема, увеличение. Разрешающая способность оптических приборов.
- •57. Плоские электромагнитные волны в среде. Поглощение света, законы поглощения.
- •58. Явление дисперсии. Нормальная и аномальная дисперсия.
- •59. Закон Брюстера и его физический смысл. Явление полного внутреннего отражения.
- •60. Поляризация плоских электромагнитных волн. Линейная, циркулярная и эллиптическая поляризация. Закон Малюса. Поляризационные приспособления.
- •61. Вращение плоскости поляризации в кристаллических и аморфных веществах.
- •62. Искусственная анизотропия, вызываемая деформацией, электрическими и магнитными полями.
31. Диамагнетики и парамагнетики. Природа диамагнетизма. Зависимость парамагнитной восприимчивости от температуры. Закон Кюри.
Диамагнетизм - свойство веществ намагничиваться навстречу приложенному магнитному полю.
Диамагнетики - вещества, магнитные моменты атомов которых в отсутствии внешнего поля равны нулю, т.к. магнитные моменты всех электронов атома взаимно скомпенсированы (например, инертные газы, водород, азот, NaCl и др.).
При
внесении диамагнитного вещества в
магнитное поле его атомы приобретают
наведенные магнитные моменты. В пределах
малого объема ΔV изотропного диамагнетика
наведенные магнитные моменты
всех атомов одинаковы и направлены
противоположно вектору
.
Парамагнетизм - свойство веществ во внешнем магнитном поле намагничиваться в направлении этого поля, поэтому внутри парамагнетика к действию внешнего поля прибавляется действие наведенного внутреннего поля.
Парамагнетики
- вещества, атомы которых имеют, в
отсутствие внешнего магнитного поля,
отличный от нуля магнитный момент
.
К
парамагнетикам относятся многие щелочные
металлы, кислород
,
оксид азота NO, хлорное железо
и др.
Природа диамагнетизма.
В чистом виде диамагнетизм встречается у веществ, результирующий магнитный момент которых равен нулю, т.е. магнитные моменты всех атомов скомпенсированы.
Диамагнетизм обусловлен стремлением электрических зарядов экранировать внутреннюю часть объема тела от действия внешнего магнитного поля и возникает вследствие изменения орбитального движения электронов под действием поля.
Закон Кюри — физический закон, описывает магнитную восприимчивость парамагнетиков, которая при постоянной температуре для этого вида материалов приблизительно прямо пропорциональна приложенному магнитному полю. Закон Кюри постулирует, что при изменении температуры и постоянном внешнем поле, степень намагниченности парамагнетиков обратно пропорциональна температуре:
M — получаемая намагниченность материала; B — магнитное поле, измеренное в Теслах; T — абсолютная температура в Кельвинах; C — постоянная Кюри данного материала.
Это соотношение выполняется только при высоких температурах или слабых магнитных полях. В обратном случае — то есть при низких температурах или при сильных полях — магнитная восприимчивость не подчиняется этому закону.
32. Закон электромагнитной индукции Фарадея. Правило Ленца.
Закон электромагнитной индукции Фарадея является основным законом электродинамики, касающимся принципов работы трансформаторов, дросселей, многих видов электродвигателей и генераторов.
Закон гласит: Для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур.
Или другими словами: Генерируемая ЭДС пропорциональна скорости изменения магнитного потока.
Правило Ленца - правило для определения направления индукционного тока: Индукционный ток, возникающий при относительном движении проводящего контура и источника магнитного поля, всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшего этот ток.
Если ток увеличивается, то и магнитный поток увеличивается.
Если
индукционный ток направлен против
основного тока.
Если
индукционный ток направлен в том же
направлении, что и основной ток.
Индукционный ток всегда направлен так, чтобы уменьшить действие причины его вызывающей.
В обобщенной формулировке правило Ленца гласит, что индукционный ток всегда направлен так, чтобы противодействовать вызвавшей его первопричине.
