Скачиваний:
213
Добавлен:
04.03.2014
Размер:
1.11 Mб
Скачать

Сверхзвуковое течение газа с непрерывным увеличением скорости (течение Прандтля–Майера)

Рис. 19. Обтекание выпуклого угла

Рассмотрим задачу Прандтля–Майера о повороте сверхзвукового потока вокруг кромки выпуклого угла  АСВ  (рис. 19). При сверхзвуковом обтекании тупого угла  АСВ  газ расширяется, ибо область, занятая газом, увеличивается; при расширении газ ускоряется, давление, плотность и температура уменьшаются. Вдоль участкаАСскорость газа постоянна. ТочкаСслужит источником возникновения слабых возмущений. Эти возмущения, как было показано ранее, распространяются по прямой линии – линии возмущенияСК,   или характеристике, которая отделяет невозмущенный поток от возмущенного, причемsin 1  1 / M1.   Вдоль участка стенкиСВскорость газа снова принимает постоянное значение, большее, чем наАС, причем   sinк= 1 / Мк. Таким образом, поворот потока к новому направлению осуществляется внутри углаKCL.

Разобьем участок расширения газа внутри угла   KCLна множество участков с незначительными непрерывными изменениями параметров. Первый малый скачок скорости произойдет наСК(см.  рис. 20). За линиейСКпоток получил несколько бόльшую скорость, причем это увеличение пришлось на долю нормальной составляющей, так как тангенциальная составляющая остается неизменной (рис. 20). Поэтому поток изменяет свое направление, о

Рис. 20. Треугольник скоростей

тклоняясь на угол

Итак, мы имеем поток с новыми параметрами: скорость больше, а   Р,Т,– немного меньше. Возмущения из этой новой области должны быть ограничены новой характеристикой –СК ',   которая вследствие поворота потока и увеличения числа   М располагается правееСК,   (см. рис. 20) и2<1Еслиw2спроектировать на направление, нормальное и тангенциальное ко второй характеристикеСК', то окажется, чтоw'n2< wn2,   аw'2>w2.   Это закономерно, так как мы знаем, что нормальная составляющая скорости к характеристике равна скорости звука, а в областиКСLтемпература, а следовательно, и скорость звука уменьшаются. Второй слабый скачок, который мы совместим сСК ', вызывает новое отклонение потока в сторонуСВи т. д.

Мы знаем, что конечные адиабатические скачки разрежения невозможны. Поэтому необходимо разбить угол   KCLна бесконечно большое число бесконечно малых углов и перейти от рассмотренной ранее условной схемы с малыми скачками разрежения к схеме непрерывного расширения газа. Поворот потока около тупого угла надо рассматривать как последовательность слабых возмущений, источником которых служит вершина угла.

Максимальный угол, на который может повернуться поток, очевидно, будет зависеть от термодинамических параметров, и его легко определить из условия расширения газа до абсолютного вакуума (когда  Т  и  Р  равны нулю). Известно, что

Д

Рис. 21. Безотрывное обтекание угла

Рис. 22. Отрывное обтекание угла

ля воздуха  max = 220 (рис. 21). Если взять  пр,  то после поворота поток отрывается и следует по линии тока, соответствующей    пр.  Между стенкой и этой линией тока образуется область вакуума. Это явление называется срывом сверхзвукового потока (рис. 22). Рассмотренная теория сверхзвукового течения внутри и вне вершины угла может быть положена в основу описания сверхзвукового движения газа около выпуклой поверхности (см. рис. 23 на с. 50). В этом случае поток ускоряется, местное число М   возрастает и «линии возмущения» расходятся веером, так как углы линий возмущения с линиями тока убывают.

При обтекании вогнутой поверхности (см. рис. 24 на с. 50) поток замедляется, число   М   становится меньше и углы линий возмущения с направлением потока возрастают. Это приводит к взаимному пересечению линий возмущения и к

49

Соседние файлы в папке Лекции (много вордовский файлов)