
- •14. Основные характеристики эвм
- •1.Постулаты Фон Неймановской эвм. Классификация эвм.
- •Классификация эвм
- •9. Последовательность прерываний.
- •10. Общие принципы ввода-вывода.
- •11. Структура системной шины.
- •12. Интерфейсы последовательной и параллельной связи.
- •13. Время выполнения команд.
- •15. Канал. Уплотнение, разделение сигнала.
- •16. Коммутация. Детерминированные и случайные сигналы. Два способа передачи по физическому каналу.
- •17. Каналы ввода-вывода.
- •18. Сопроцессоры. Синхронизация по командам.
- •19. Сопроцессоры. Синхронизация по данным.
- •20. Внутренняя организация fpu
- •21. Статическая и динамическая память.
- •22. Расслоение банков. Контроль чётности. Распределение памяти.
- •23. Ассоциативный параллельный процессор.
- •24. Структура кэш-памяти.
- •25. Основной поток команд для pentium.
- •26. Устройство обработки ветвлений. И предсказания ветвления.
- •27. Кэш с отслеживанием.
- •28. Мультипроцессоры.
- •29. Параллельные алгоритмы.
- •30. Эвм с сокращенным набором команд.
- •31. Простейшие логические элементы. Функционирование комбинационных схем.
- •32. Общие положения теории цифровых автоматов.
- •33. Методы описания цифровых автоматов.
- •34. Элементарный автомат.
- •36. Периферийные устройства – печати.
- •37. Периферийные устройства – мониторы.
- •38. Сравнение методов коммутации данных
- •36. Периферийные устройства – печати.
- •Матричный принтер
- •Струйный принтер
- •Лазерный принтер
- •37. Периферийные устройства – мониторы.
- •По виду выводимой информации
- •По типу экрана
- •Основные параметры мониторов
- •Плазменная панель
- •Принцип действия
- •3. Адресация данных и переходов. Адресация переходов
- •Адресация данных
- •28. Мультипроцессоры.
37. Периферийные устройства – мониторы.
Монито́р — устройство, предназначенное для визуального отображения информации. Информация (видеосигнал) для вывода на монитор поступает с компьютера посредством видеокарты, либо с другого устройства, формирующего видеосигнал.
По виду выводимой информации
1. алфавитно-цифровые
а) дисплеи, отображающие только алфавитно-цифровую информацию
б) дисплеи, отображающие псевдографические символы
в) интеллектуальные дисплеи, обладающие редакторскими возможностями и осуществляющие предварительную обработку данных
2.графические для вывода текстовой и графической (в том числе видео) информации.
А) векторные
Б) растровые
По типу экрана
ЭЛТ — на основе электронно-лучевой трубки
ЖК — жидкокристаллические мониторы
Плазменный — на основе плазменной панели
Проектор — видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант — через зеркало или систему зеркал); и Проекционный телевизор
OLED-монитор — на технологии OLED (органический светоизлучающий диод)
Виртуальный ретинальный монитор — технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза.
Лазерный — на основе лазерной панели (пока только внедряется в производство)
Основные параметры мониторов
Соотношение сторон экрана — стандартный (4:3), широкоформатный (16:9, 16:10) или другое соотношение (например 5:4)
Размер экрана — определяется длиной диагонали, чаще всего в дюймах
Разрешение — число пикселей по вертикали и горизонтали
Глубина цвета — количество бит на кодирование одного пикселя (от монохромного до 32-битного)
Размер зерна или пикселя
Частота обновления экрана (Гц)
Время отклика пикселей (не для всех типов мониторов)
Угол обзора
Плазменная панель
Газоразрядный экран ( «плазменная панель») —монитор, основанный на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, иначе говоря в плазме.
Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.
Принцип действия
Работа плазменной панели состоит из трех этапов:
1. инициализация, в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульс инициализации имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионовой газовой среды, на второй ступени разряд в газе, а на третьей — завершение упорядочивания.
2. адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.
3. подсветка, в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.
Один цикл «инициализация — адресация — подсветка» образует формирование одного подполя изображения. Складывая несколько подполей можно обеспечивать изображение заданной яркости и контраста. В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.
Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит емкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение проходя через переднюю стеклянную пластину попадает в глаз зрителя.