
- •1. Общая характеристика систем электроснабжения.
- •2. Этапы формирования Единой энергетической системы страны
- •3 Основные причины и результаты реформирования электроэнергетики России
- •4. Вопросы, решаемые в процессе проектирования систем электроснабжения. Основные требования при проектировании и эксплуатации электрических станций, подстанций, сетей и энергосистем.
- •5. Нормы технологического проектирования нтп эпп-94. Область применения и общие требования к проектированию.
- •6. Нормы технологического проектирования нтп эпп-94. Основные источники питания промышленных предприятий.
- •7. Нормы технологического проектирования нтп эпп-94. Электрические сети 110-330 кВ.
- •8. Электрические сети 6-10 кВ. Режимы работы, тенико-экономичкский характеристики и области применения
- •9. Выбор типа, числа и мощности силовых трансформаторов Основные положения
- •10. Выбор мощности силовых трансформаторов при несимметричной нагрузке. Схемы соединения обмоток.
- •11. Проверка силовых трансформаторов на перегрузочную способность. Аварийная и систематическая перегрузки.
- •12. Определение потерь мощности и электроэнергии в автотрансформаторах.
- •13Определение потерь мощности и электроэнергии в силовых трансформаторах
- •14. Определение экономически целесообразного режима работы трансформаторов
- •15. Выбор числа трансформаторных подстанций на предприятии. Применение напряжения 20 кВ.
- •16. Генплан предприятия. Особенности выбора места гпп и рп на генплане предприятия.
- •17. Учет особенности генплана предприятия при проектировании систем эпп
- •18. Особенности проектирования гпп и рп в схемах эпп
- •19. Общие принципы построения схем внутрицехового и внутризаводского электроснабжения.
- •20. Характерные схемы электрических сетей внешнего электроснабжения
- •21 Характерные схемы электрических сетей внутреннего электроснабжения
- •22. Типовые схемы электроснабжения предприятий различных отраслей промышленности.
- •23. Распределение электрической энергии до 1000 в. Порядок проектирования.
- •24. Схемы присоединения высоковольтных электроприёмников.
- •25. Картограммы нагрузок. Назначение, особенности построения.
- •26. Определение уцэн и определение зоны рассеяния уцэн.
- •27. Основной состав оборудования, используемого в сетях выше 1000 в. Назначение и современные типы.
- •28 Нагрузочная способность и выбор параметров основного электрооборудования
- •29 Основное содержание рд 153-34.0-20.527-98.
- •30. Назначение и особенности применения сдвоенных реакторов в системе эпп.
- •31. Коммерческий и технический учет электрической энергии. Электробаланс предприятия. Аскуэ.
- •Автоматизированная система коммерческого учета электроэнергии предназначена для:
- •32 Методика измерения сопротивления изоляции электроустановок, аппаратов, вторичных цепей, электропроводок напряжением до 1000 в
- •33 Методика испытания средств защиты
- •34 Основные принципы автоматизации и диспетчеризации электроснабжения.
- •35. Режимы напряжений в сетях промышленных предприятий. Выбор рационального напряжения электроснабжения
- •36. Нормальные требования к качеству напряжения. Методы и средства кондиционирования.
- •37. Самозапуск трехфазных электродвигателей. Основные положения.
- •38. Последовательность расчета самозапуска.Выбег и разгон эд при самозапуске
- •39. Особенности пуска и самозапуска синхронных двигателей. Ресинхронизация сд.
- •40. Токи включения и уровни напряжений при самозапуске
- •41. Режимы реактивной мощности в системах эпп. Основные определения и положения
- •42. Мероприятия по уменьшению реактивных нагрузок.
- •43. Общая методика выбора устройств компенсации реактивных нагрузок.
- •44. Устройства компенсации реактивной мощности. Краткое описание и сравнительная характеристика
- •45. Синхронные двигатели (компенсаторы) и конденсаторные установки. Область и особенности применения.
- •46. Установки компенсации реактивной мощности. Порядок проектирования.
- •47. Резонансные явления в электроустановках зданий.
- •48. Новые методы и технические средства использования возобновляемых источников энергии в производственных процессах
- •49. Энергосбережение при передаче и распределении электроэнергии. Основные мероприятия.
- •50 Основные задачи развития электроэнергетических систем
- •52 Общие принципы оптимизации систем электроснабжения с учетом надежности. Критерии оптимальности.
- •53 Информационное обеспечение задач оптимизации сэс
- •54. Физическое и математическое моделирование. Свойства моделей.
- •56. Основные системные понятия
- •57 Типы систем, их основные свойства и особенности
- •58 Свойства и особенности развития производственных (энергетических систем)
- •59 Оптимизация и эффективность производственных систем
- •60. Основные понятия теории планирования экспериментов
58 Свойства и особенности развития производственных (энергетических систем)
Система электроснабжения – это реальная иерархически построенная и постоянно развивающаяся человеческо-механическая система с заданной целью управления с типичной для нее неполной познаваемостью (неопределенностью) количественных характеристик различия.
Основными свойствами этой системы явл-ся:
Развитие в рамках существующих ограничений
Большое число и дискретность нелинейных зависимостей
Наличие обратных связей
Самоорганизация и самоприспособленность
Особенности технических систем:
Их связи обычно бывают материальными (энергетическими)
Процессы, протекающие в них являются преимущественно непрерывными во времени
Математические выражения физических законов, определяющих основные явления и процессы в системах электроснабжения сравнительно точно известны
Человек в процессе функционирования системы выступает в роли контролера (оператора) управляемая часть системы состоит из машин, человек в ней не занят
Экономическую систему можно разделить на подсистемы в соответствии с 4 фазами общественного процесса воспроизводства: Производство, распределение, обмен и потребление.
Производственная система – это система, цель kt – изготовление потребит. стоимости путем постепенного превращения расходных материалов сырья или полуфабрикатов в изделия, служащие для производственного или непроизводственного потребления в данной экономической системе.
59 Оптимизация и эффективность производственных систем
Экономическую систему можно разделить на подсистемы в соответствии с 4 фазами общественного процесса воспроизводства: Производство, распределение, обмен и потребление.
Производственная система – это система, цель kt – изготовление потребит. стоимости путем постепенного превращения расходных материалов сырья или полуфабрикатов в изделия, служащие для производственного или непроизводственного потребления в данной экономической системе.
60. Основные понятия теории планирования экспериментов
Для подробного изучения объекта исследования необходима его подробная модель. Подходящей моделью является «черный ящик. Его построение основано на принципе: оптимальное управление возможно при неполной информации. Ясная формулировка этого факта является важнейшим достижением кибернетики Объекту исследования соответствует прямоугольник. Выходы, обозначаемые стрелками, выходящими из объекта, соответствуют параметрам оптимизации. Стрелки, входящие в объект, - входы – соответствуют возможным способам воздействия на объект. В терминологии планирования эксперимента входы называются факторами Фактором называется измеримая переменная величина, принимающая в некоторый момент некоторое определенное значение и соответствующая одному из возможных способов воздействия на объект исследования. Число возможных воздействий на объект принципиально неограниченно. Чтобы облегчить выбор, удобно разбить их на две группы. К первой группе относятся воздействия (факторы), определяющие сам объект, а ко второй – факторы, определяющие его состояние. Каждый фактор имеет область определения. В планировании эксперимента рассматриваются только дискретные области определения факторов. Кроме того, эти области всегда ограничены. Ограничения могут быть принципиальными и техническими. Следует указать на два требования, предъявляемые к совокупности факторов. Это – требования отсутствия корреляции между любыми двумя факторами и совместимости факторов. Отсутствие коррелированности факторов означает возможность установления какого-либо фактора на любой уровеньЕсли эти условия не выполняются, то нельзя планировать эксперимент. Другие ограничения на область налагаются требованием совместимости факторов. Несовместимость факторов возникает в том случае, если некоторые комбинации их значений, каждое из которых лежит внутри области определения, не могут быть осуществлены. Все факторы можно разделить на качественные и количественные. Часто в виде качественного фактора используют различные взаимоисключающие реагенты. Отбор факторов начинают после того, как в распоряжении экспериментатора окажется их полный список. При составлении такого списка следует перечислить все возможные факторы (удовлетворяющие общим требованиям), как бы велико ни было их число. Главной заботой при составлении списка факторов должна быть его полнота. Лучше включить несколько десятков несущественных переменных, чем пропустить одно существенное. Отбор факторов можно осуществлять экспериментально. Но так как даже небольшое сокращение числа факторов приводит к значительной экономии опытов, возникает вопрос об использовании априорной информации для их предварительного отсеивания