
- •1. Общая характеристика систем электроснабжения.
- •2. Этапы формирования Единой энергетической системы страны
- •3 Основные причины и результаты реформирования электроэнергетики России
- •4. Вопросы, решаемые в процессе проектирования систем электроснабжения. Основные требования при проектировании и эксплуатации электрических станций, подстанций, сетей и энергосистем.
- •5. Нормы технологического проектирования нтп эпп-94. Область применения и общие требования к проектированию.
- •6. Нормы технологического проектирования нтп эпп-94. Основные источники питания промышленных предприятий.
- •7. Нормы технологического проектирования нтп эпп-94. Электрические сети 110-330 кВ.
- •8. Электрические сети 6-10 кВ. Режимы работы, тенико-экономичкский характеристики и области применения
- •9. Выбор типа, числа и мощности силовых трансформаторов Основные положения
- •10. Выбор мощности силовых трансформаторов при несимметричной нагрузке. Схемы соединения обмоток.
- •11. Проверка силовых трансформаторов на перегрузочную способность. Аварийная и систематическая перегрузки.
- •12. Определение потерь мощности и электроэнергии в автотрансформаторах.
- •13Определение потерь мощности и электроэнергии в силовых трансформаторах
- •14. Определение экономически целесообразного режима работы трансформаторов
- •15. Выбор числа трансформаторных подстанций на предприятии. Применение напряжения 20 кВ.
- •16. Генплан предприятия. Особенности выбора места гпп и рп на генплане предприятия.
- •17. Учет особенности генплана предприятия при проектировании систем эпп
- •18. Особенности проектирования гпп и рп в схемах эпп
- •19. Общие принципы построения схем внутрицехового и внутризаводского электроснабжения.
- •20. Характерные схемы электрических сетей внешнего электроснабжения
- •21 Характерные схемы электрических сетей внутреннего электроснабжения
- •22. Типовые схемы электроснабжения предприятий различных отраслей промышленности.
- •23. Распределение электрической энергии до 1000 в. Порядок проектирования.
- •24. Схемы присоединения высоковольтных электроприёмников.
- •25. Картограммы нагрузок. Назначение, особенности построения.
- •26. Определение уцэн и определение зоны рассеяния уцэн.
- •27. Основной состав оборудования, используемого в сетях выше 1000 в. Назначение и современные типы.
- •28 Нагрузочная способность и выбор параметров основного электрооборудования
- •29 Основное содержание рд 153-34.0-20.527-98.
- •30. Назначение и особенности применения сдвоенных реакторов в системе эпп.
- •31. Коммерческий и технический учет электрической энергии. Электробаланс предприятия. Аскуэ.
- •Автоматизированная система коммерческого учета электроэнергии предназначена для:
- •32 Методика измерения сопротивления изоляции электроустановок, аппаратов, вторичных цепей, электропроводок напряжением до 1000 в
- •33 Методика испытания средств защиты
- •34 Основные принципы автоматизации и диспетчеризации электроснабжения.
- •35. Режимы напряжений в сетях промышленных предприятий. Выбор рационального напряжения электроснабжения
- •36. Нормальные требования к качеству напряжения. Методы и средства кондиционирования.
- •37. Самозапуск трехфазных электродвигателей. Основные положения.
- •38. Последовательность расчета самозапуска.Выбег и разгон эд при самозапуске
- •39. Особенности пуска и самозапуска синхронных двигателей. Ресинхронизация сд.
- •40. Токи включения и уровни напряжений при самозапуске
- •41. Режимы реактивной мощности в системах эпп. Основные определения и положения
- •42. Мероприятия по уменьшению реактивных нагрузок.
- •43. Общая методика выбора устройств компенсации реактивных нагрузок.
- •44. Устройства компенсации реактивной мощности. Краткое описание и сравнительная характеристика
- •45. Синхронные двигатели (компенсаторы) и конденсаторные установки. Область и особенности применения.
- •46. Установки компенсации реактивной мощности. Порядок проектирования.
- •47. Резонансные явления в электроустановках зданий.
- •48. Новые методы и технические средства использования возобновляемых источников энергии в производственных процессах
- •49. Энергосбережение при передаче и распределении электроэнергии. Основные мероприятия.
- •50 Основные задачи развития электроэнергетических систем
- •52 Общие принципы оптимизации систем электроснабжения с учетом надежности. Критерии оптимальности.
- •53 Информационное обеспечение задач оптимизации сэс
- •54. Физическое и математическое моделирование. Свойства моделей.
- •56. Основные системные понятия
- •57 Типы систем, их основные свойства и особенности
- •58 Свойства и особенности развития производственных (энергетических систем)
- •59 Оптимизация и эффективность производственных систем
- •60. Основные понятия теории планирования экспериментов
1. Общая характеристика систем электроснабжения.
Системами электроснабжения (СЭС) объектов хозяйства страны называются электроэнергетические комплексы, обеспечивающие непосредственное питание электроэнергией конкретных потребителей или их групп. В данные комплексы входят местные электрические станции, электрические сети всех необходимых номинальных напряжений и конструктивных исполнений, а также электроприемники всех технологических назначений. Из сказанного следует, что СЭС являются неотъемлемой частью электроэнергетических систем (ЭЭС).
Источниками питания (ИП) электроэнергией СЭС в основном являются понижающие подстанции 35-220/6-10 кВ ЭЭС, а также местные электрические станции. Последними могут быть теплоэлектроцентрали (ТЭЦ) городов и крупнейших промышленных предприятий, осуществляющие как электро-, так и теплоснабжение потребителей, а также дизельные электростанции (ДЭС) в сельскохозяйственных и удаленных от ЭЭС районах.
Электрические сети, питающие СЭС, состоят из внешних воздушных линий 35-220 кВ и понижающих подстанций (ПС) 35-220/6-10 кВ. Распределение электроэнергии по территориям объектов электроснабжения и внутри зданий промышленного, гражданского и другого назначения выполняется линиями 6-10 кВ, подстанциями 6-10/0,38-0,66 кВ и линиями до 1 кВ.
Электроприемники различных технологических назначений преобразуют электроэнергию в механическую, тепловую, электрических и магнитных полей и т.п.
Промышленные предприятия потребляют от 30 до 70% электроэнергии, вырабатываемой в составе ЭЭС. Значительный разброс промышленного потребления определяется индустриальной развитостью и климатическими условиями различных стран; для индустриально развитых стран, включая РФ, характерны количественные значения данного энергопотребления в 50-70%. В данную группу входят предприятия машиностроения, черной и цветной металлургии, химической промышленности, стройматериалов, текстильных и продовольственных производств и многих иных.
Системы электроснабжения промышленности характеризуется наибольшим многообразием видов применяемых ЭП, их номинальных мощностей и режимов работы. Вместе с тем основными из них в данной области являются асинхронные двигатели с короткозамкнутым ротором (60-90%), значительную часть которых составляют электродвигатели 10-50 кВт (380 В). Синхронные двигатели и крупные асинхронные с регулируемым пуском применяются в 10-20% электроприводных установок. В связи с указанным основные влияния данных ЭП на СЭС в целом заключаются в: колебаниях напряжения, вызываемых значительными пусковыми токами короткозамкнутых асинхронных двигателей; возможностях массового торможения асинхронных двигателей при снижениях рабочего напряжения до 70-80% номинального значения («лавина напряжения»); возможностях работы синхронных двигателей как с потреблением, так и с выдачей реактивной мощности.
Из всего многообразия видов ЭП промышленности значительное влияние на режимы СЭС (в некоторых случаях и на режимы ЭЭС) оказывают электротехнологические и выпрямительные установки. В указанных случаях неизбежны значительные колебания напряжения. При применении выпрямительных установок (электролиз, электротермия и др.) из сети переменного тока потребляются несинусоидальные токи, ведущие к несинусоидальности напряжения (в той или иной степени) в СЭС в целом.