
- •Основные понятия и определения дисциплины.
- •История развития теории алгоритмов.
- •Роль алгоритмов в науке и технике.
- •Понятие алгоритма и алгоритмического процесса.
- •2. Формальное определение алгоритма
- •Алгоритмический процесс.
- •Основные вопросы теории алгоритмов.
- •Классификация алгоритмов.
- •Свойства алгоритмов.
- •Логика предикатов.
- •Интерпретация.
- •Истинность и выполнимость формул.
- •Нормальные алгоритмы Маркова.
- •Гипотеза Черча.
- •Машина Тьюринга.
- •Рекурсивные функции.
- •Алгоритмически неразрешенные проблемы.
- •Сложность алгоритмов.
- •Временная и вычислительная сложность.
- •Понятие p и np-задач.
- •Темпоральные логики. Нечеткая и модальные логики.
- •Примеры задач np-класса.
- •Логическое программирование.
- •Дедуктивные теории.
- •Свойства дедуктивных теорий. Противоречивость
- •Полнота
- •Независимость аксиом
- •Разрешимость
- •Формальные аксиоматические теории.
- •Свойство выводимости.
- •Логические матрицы.
- •Модели Крипке для логики высказываний.
- •Формальное определение
- •Основные понятия мЛиТа.
- •Логические функции.
- •Правила логики высказываний. Законы логики высказываний.
- •Основные понятия
- •Равносильность. Логическое следствие.
- •Кванторы.
- •Категорические высказывания. Высказывание Категорическое
- •Связанные и свободные переменные. Свободные и связанные переменные
- •Операции над кванторами
- •Общая значимость.
- •Логические функции.
- •Алгоритмы сортировки данных. Сортировка слиянием.
- •Алгоритмы сортировки данных. Сортировка «пузырьком».
- •Алгоритмы сортировки данных. Сортировка вставками.
- •Алгоритмы сортировки данных. Сортировка Шейкером.
- •Алгоритмы сортировки данных. Быстрая сортировка.
- •Алгоритмы сортировки данных. Сортировка подсчетом.
- •Моделирование алгоритмов программ с помощью блок-схем.
- •История развития математической логики.
- •Логика высказываний.
- •Булева алгебра и основные логические тождества.
- •Пропозициональные формулы и логические функции.
- •Аксиоматический метод исчисления высказываний.
Темпоральные логики. Нечеткая и модальные логики.
Темпоральная логика (англ. temporal logic) в логике — это логика, учитывающая причинно-следственные связи в условиях времени. Используется для описания последовательностей явлений и их взаимосвязи по временной шкале. Она была разработана в 1960-х Артуром Приором на основе модальной логики и получила дальнейшее развитие в информатике благодаря трудам лауреата Тьюринговской премии Амира Пнуэли.Есть два подхода темпоральной логики, основанные на принципах здравого смысла и диалектики: «после этого» означает «по причине этого», либо «после этого» означает «позже» в хронологическом смысле.
Нечёткая логика и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено профессором Лютфи Заде в 1965 году. В этой работе понятие множества было расширено допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0..1] а не только 0 или 1. такие множества были названы нечеткими. Также автором были предложены различные логические операции над нечеткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечеткие множества.Символическая нечёткая логика
Символическая нечёткая логика основывается на понятии t-нормы. После выбора некоторой t-нормы (а её можно ввести несколькими разными способами) появляется возможность определить основные операции над пропозициональными переменными: конъюнкцию, дизъюнкцию, импликацию, отрицание и другие.
Нетрудно доказать теорему о том, что дистрибутивность, присутствующая в классической логике, выполняется только в случае, когда в качестве t-нормы выбирается t-норма Гёделя.
Кроме того, в силу определенных причин, в качестве импликации чаще всего выбирают операцию, называемую residium (она, вообще говоря, также зависит от выбора t-нормы).
Определение основных операций, перечисленных выше, приводит к формальному определению базисной нечёткой логики, которая имеет много общего с классической булевозначной логикой (точнее, с исчислением высказываний).
Существуют три основных базисных нечётких логики: логика Лукасевича, логика Гёделя и вероятностная логика (Product logic). Интересно, что объединение любых двух из трёх перечисленных выше логик приводит к классической булевозначной логике.
Модальная логика
— логика
в которой кроме стандартных логических
связок, переменных и/или предикатов
есть модальности
(модальные операторы). Модальности
бывают разные; наиболее распространены
временны́е («когда-то в будущем», «всегда
в прошлом», «всегда» и т. д.) и пространственные
(«здесь», «где-то», «близко» и т. д.).
Например, модальная логика способна
оперировать утверждениями типа «Москва
всегда была столицей России» или
«Санкт-Петербург, когда-то в прошлом,
был столицей России», которые невозможно
или крайне сложно выразить в немодальном
языке. Кроме временных и пространственных
модальностей есть и другие, например
«известно, что» (логика знания) или
«можно доказать, что» (логика
доказуемости).Обычно
для обозначения модального оператора
используется
и
двойственный к нему
: