
- •«Релейная защита систем электроснабжения» конспект лекций
- •Содержание
- •Введение
- •Лекция 1
- •1.1 История релейной защиты и автоматики
- •1.2 Назначение релейной защиты и автоматики
- •1.3 Требования, предъявляемые к свойствам релейной защиты (рз)
- •1.4 Классификация защит
- •1.5 Структура устройства рз
- •1.6 Каналы связи устройств рза
- •1.7 Источники оперативного тока
- •Лекция 2
- •2.1 Измерительные преобразователи тока и напряжения
- •2.2 Конструкция трансформатора тока
- •2.3 Принцип действия
- •2.4 Построение векторной диаграммы тт
- •2.5 Погрешности трансформатора тока
- •2.7 Активный тт
- •2.8 Схемы соединений тт
- •2.9 Коэффициенты трансформации тт
- •2.10 Конструкция трансформатора напряжения (тн)
- •2 Рисунок 2.18. Емкостный тн .11 Емкостный тн
- •2. Конструкция трансформатора тока.
- •Лекция 3
- •3.1 Токовые защиты линий электропередачи
- •3.2 Первая ступень токовой защиты
- •3.3 Вторая ступень токовой защиты
- •3.5 Карта селективности
- •3.6 Токовые направленные защиты линий электропередачи
- •3.7 Схемотехника токовых защит
- •3.8 Токовые и токовые направленные защиты нулевой последовательности в сетях с заземленной нейтралью
- •3.9 Первая ступень токовой защиты нулевой последовательности
- •3.10 Вторая ступень токовой защиты нулевой последовательности
- •3.11 Третья ступень токовой защиты нулевой последовательности
- •3.12 Схемотехника токовых защит нулевой последовательности
- •3.13 Токовые и токовые направленные защиты нулевой последовательности в сетях с изолированной нейтралью
- •Лекция 4
- •4.1 Дистанционные защиты лэп
- •4.2 Характеристики срабатывания дистанционной защиты
- •4.3 Реализация реле сопротивления
- •4.4 Первая ступень дистанционной защиты
- •4.5 Вторая ступень дистанционной защиты
- •4.6 Третья ступень дистанционной защиты
- •4.7 Особенности работы дистанционной защиты
- •Лекция 5
- •5.1 Поперечная дифференциальная защита лэп
- •5.2 Особенности работы поперечной дифференциальной защиты лэп
- •5 Рисунок 5.3. Принципиальная схема направленной поперечной дифференциальной защиты лэп .3 Направленная поперечная дифференциальная защита лэп
- •5.4 Продольная дифференциальная защита лэп
- •Чувствительность защиты рассчитывается по выражению:
- •5.5 Продольная дифференциальная защита лэп с реле на обоих концах и проводным каналом
- •5.6 Односистемная продольная дифференциальная защита лэп с реле на обоих концах и проводным каналом
- •5.7 Особенности работы продольных дифференциальных защит
- •5.8 Продольная дифференциально-фазная высокочастотная защита
- •Лекция 6
- •6.1 Повреждения и ненормальные режимы работы трансформаторов
- •6.2 Токовая отсечка
- •6.3 Продольная дифференциальная защита
- •6.4 Максимальная токовая защита
- •6.5 Защита от перегрузки
- •6 Рисунок 6.5. Схема установки газовой защиты трансформатора .6 Газовая защита
- •6.7 Специальная токовая защита нулевой последовательности с заземляющим проводом
- •6.8 Специальная токовая защита нулевой последовательности
- •6.9 Схема защиты трансформатора
- •Лекция 7
- •7.1 Ненормальные режимы работы и повреждения электродвигателей
- •7.2 Токовая отсечка
- •7.3 Продольная дифференциальная отсечка
- •7.4 Защита от перегрузки
- •7.5 Защита от понижения напряжения
- •7 Рисунок 7.6 Защита от замыканий на корпус обмотки статора .6 Защита от замыкания обмотки статора на корпус
- •7.7 Защита от эксцентриситета ротора электрической машины
- •7.8 Защита от разрыва стержня «беличьей клетки» ротора
- •7.9 Схема защиты эд с продольной дифференциальной защитой
- •7.10 Защиты эд напряжением ниже 1000 в
- •Лекция 8
- •8.1 Токовая отсечка шин без выдержки времени
- •8.2 Дифференциальная защита шин
- •8.3 Токовая отсечка шин с выдержкой времени
- •8.4 Максимальная токовая защита
- •8.5 Защита секционного выключателя.
- •8.6 Дуговая защита шин
- •8.6.1 Дуговая защита клапанного типа
- •8.6.2 Защита на фотоэлементах
- •8.6.3 Оптическая логическая защита
- •Лекция 9
- •9.1 Микропроцессорные устройства рза
- •9.2 Виды мп-защит
- •9.3 Особенности расчета уставок срабатывания мп
- •Предметный указатель
- •Библиографический список
- •Приложения приложение а. Условные буквенные и графические обозначения основных элементов рза
- •Приложение б. Характеристики электромеханических реле
3.5 Карта селективности
Если ток срабатывания, быстроту срабатывания и чувствительность можно оценить количественно, то для оценки селективности количественного критерия нет. Чтобы сравнить между собой защиты по селективности действия чертится карта селективности (рис. 3.5). Действия защит селективны, если их характеристики не пересекаются.
Область применения. Токовые защиты используются в основном для защиты линий электропередачи напряжением 6–35 кВ, реже 110 кВ с односторонним питанием. Они чувствительны ко всем многофазным КЗ.
Рисунок 3.5. Карта селективности
3.6 Токовые направленные защиты линий электропередачи
На линиях с двухсторонним питанием или кольцевых часто невозможно согласовать токовые защиты между собой.
Рисунок 3.6. Линия с двухсторонним питанием
В нормальных и аварийных режимах мощность через защиту может иметь различное направление. Например, при КЗ в точке К2 трудно согласовать между собой защиты РЗ2 и РЗ3. Если РЗ2 сработает раньше РЗ3, то будут отключены потребители подстанции Б. Аналогичная ситуация с защитами РЗ4 и РЗ5.
Чтобы защиты РЗ2, РЗ3 и РЗ4, РЗ5 не согласовывать между собой, необходимо разделить их действия. Это можно сделать, если блокировать защиту при протекании мощности от линии к шинам и разрешать отключать при протекании мощности от шин в линию.
Рисунок 3.7. Направления действия защит на линии с двухсторонним питанием
Если направление мощности (рис. 3.7), протекаемой через защиту, совпадает с направлением действия защиты, то защита действует на отключение. При КЗ в точке К2 сработают защиты РЗ3 и РЗ4, а если откажет одна из них, то должна сработать РЗ1 или РЗ6 соответственно. Защиты РЗ2 и РЗ5 будут заблокированы, так как направления действия защит не совпадают с направлением протекающей через них мощности.
Направление мощности в релейной защите определяют с помощью специального реле, называемого «реле направления мощности». К реле подводятся две электрические величины ― ток и напряжение.
3.7 Схемотехника токовых защит
Обычно токовые защиты используются в сетях 6; 10; 35 кВ, редко ― в 110 кВ. На рис 3.8 приведена схема трехступенчатой токовой направленной защиты для сети с изолированной нейтралью.
По схеме (рис. 3.8) невозможно различить отсечку с ВВ от МТЗ. Отличие отсечки от МТЗ состоит в способе обеспечения селективности: селективность отсечки обеспечивается зоной действия защиты, а селективность МТЗ обеспечивается выдержкой времени. Для обычных ненаправленных защит в схеме отсутствуют реле направления мощности KW1, KW2 и KW3 и их контакты KW1.1, KW2.1 и KW3.1.
а) б) в)
г)
Рисунок 3.8. Схема трехступенчатой токовой защиты: а) первичные цепи присоединения; б) вторичные цепи трансформаторов тока; в) вторичные цепи трансформатора напряжения; г) логическая схема оперативных цепей постоянного тока
3.8 Токовые и токовые направленные защиты нулевой последовательности в сетях с заземленной нейтралью
В
Рисунок 3.9.
Зависимости токов спадания КЗ прямой
и нулевой последовательности
в
зависимости от длинны ЛЭП
― токи КЗ более резко спадают у нулевой последовательности (рис. 3.9), чем у прямой (сопротивление нулевой последовательности для ЛЭП в среднем в три раза больше чем сопротивление прямой последовательности X0 ≈ 3X1), защищаемая зона вследствие этого больше, чем у обычной токовой защиты;
― третью ступень не надо отстраивать от рабочих токов;
― уменьшение выдержек времени последних ступеней;
― необходимо в три раза меньше измерительных реле;
― отсутствие мертвых зон у ОНМ при близких КЗ.
Недостатки защиты:
― защиты не реагируют на токи трехфазного и двухфазного КЗ;
― необходимо отстраивать или блокировать защиты при неполнофазном режиме работы;
― необходимо отстраивать защиты от броска тока намагничивания силовых трансформаторов.