
- •Введение
- •Тема 5. Электронные приборы
- •Лекция 18. Физические свойства полупроводниковых материалов. Диоды
- •1. Электропроводность металлов и диэлектриков
- •2. Электропроводность полупроводников
- •Электропроводность примесных
- •4. Электронно-дырочный переход
- •4.1. Электронно-дырочный переход при отсутствии внешнего электрического поля
- •Электронно-дырочный переход под воздействием внешнего электрического поля
- •5. Основные параметры и типы
- •Контрольные вопросы и задачи
- •Лекция 19. Транзисторы.
- •Классификация транзисторов
- •Биполярные транзисторы
- •Модуль коэффициента передачи определяется выражением
- •3. Полевые транзисторы
- •Общие сведения об igbt транзисторах
- •Интегральные микросхемы
- •Лекция 20. Силовые полупроводниковые приборы
- •Динисторы
- •Тиристоры
- •3. Симисторы
- •4. Статический индукционный транзистор
- •Тема 6. Электронные устройства лекция 21. Резистивные усилители сигналов низкой частоты
- •Классификация усилителей
- •Принцип работы резистивного усилителя
- •2.1 Схемы смещения и температурной стабилизации
- •Модуль коэффициента усиления определяется выражением:
- •Обозначим
- •4. Дифференциальный усилитель
- •При кu → ∞ коэффициент усиления схемы с оос определяется простым отношением
- •Частотные свойства оу
- •Электрические фильтры
- •Фильтр нижних частот
- •2.2.Фильтр верхних частот
- •Ачх фильтра приведена на рис. 22.5, б.
- •2.3 Полосовой фильтр
- •Избирательные усилители
- •Коэффициент передачи моста Вина в цепи пос определяется выражением
- •Лекция 23. Усилители мощности
- •Однотактный усилитель мощности
- •2. Двухтактный усилитель мощности
- •Лекция 24. Генераторы электрических сигналов
- •1. Назначение и классификация генераторов
- •2. Принципы построения генераторов
- •3. Генераторы гармонических колебаний
- •Трехточечные схемы генераторов
- •Лекция 25. Импульсные устройства
- •1. Общие сведения об импульсных сигналах
- •2. Электронные ключи
- •3. Компараторы
- •4. Формирующие цепи
- •Триггеры
- •Лекция 26. Генераторы импульсных сигналов
- •Мультивибраторы
- •2. Генераторы линейно изменяющегося напряжения
- •Если напряжение на входе оу постоянное, то на его выходе формируется линейно изменяющееся напряжение
- •Линейно убывает и в момент t3 принимает значение:
- •Далее значение uглин периодически изменяется от –0,79 в до 3,2 в, а uос от –2,32 в до 4,31 в.
- •Лекция 27. Источники питания электронных устройств
- •Общая характеристика вторичных
- •2. Однофазные выпрямители тока
- •2.1 Однофазные выпрямители
- •Трехфазные выпрямители
- •Управляемые выпрямители
- •3. Сглаживающие фильтры
- •3. Стабилизаторы напряжения
- •Лекция 28. Применение электронных устройств в технике птм
- •Электронные регуляторы напряжения
- •Электронные схемы управления стартером
- •3. Электронные системы зажигания
- •3.1. Основные этапы развития электронных систем зажигания
- •3.2. Датчики углового положения коленчатого вала двс
- •3.3. Коммутаторы
- •3.3.1. Коммутаторы с нормируемой скважностью
- •Тема 7. Цифровые устройства лекция 29. Введение в цифровую электронику
- •Общие сведения о цифровых сигналах
- •Основные операции и элементы
- •Основные теоремы алгебры логики
- •Булевы функции (функции логики)
- •Для элемента "или-не"
- •Для элемента "и-не"
- •Минимизация булевых функций
- •Лекция 30. Комбинационные устройства
- •1. Шифраторы
- •Дешифраторы, преобразователи кодов,
- •Сумматоры
- •Цифровые компараторы
- •Арифметико – логические устройства
- •Лекция 31. Триггеры
- •Общие сведения и классификация триггеров
- •Rs триггер на элементах “или – не”
- •Rs триггер на элементах “и – не”
- •Синхронные rs-триггеры
- •5. Универсальные триггеры
- •Лекция 32. Последовательностные устройства
- •1. Счетчики импульсов
- •Регистры
- •Цифровые запоминающие устройства
- •Лекция 33. Цифро-аналоговые и аналого- цифровые преобразователи
- •Цифро-аналоговые преобразователи
- •2. Аналого-цифровые преобразователи
- •2.1. Ацп последовательного счета.
- •2.1. Ацп поразрядного уравновешивания
- •Ацп одновременного считывания
- •Лекция 34. Микропроцессоры
- •Общие сведения
- •Структура микропроцессора
- •Секционированные микропроцессоры
- •Заключение
- •Тема 5. Электронные приборы 5
- •Тема 6. Электронные устройства 47
- •Тема 7. Цифровые устройства 169
Дешифраторы, преобразователи кодов,
КОММУТАТОРЫ
Дешифраторы предназначены для преобразования цифровой информации из двоичной системы счисления в десятичную. Для примера рассмотрим принцип построения схемы преобразования кода 8-4-2-1 в цифры. У такой схемы четыре входа (по числу разрядов кода) и десять выходов. Сигнал «1» появляется только на том выходе дешифратора, номер которого соответствует виду входной кодовой комбинации.
Из приведенного словесного описания следует, что дешифратор выполняет преобразование, обратное шифратору. Этому описанию соответствует таблица 30.1, только входные и выходные сигналы меняются местами. Для построения схемы нужно перейти от таблицы 30.1 к алгебраическому выражению, применив минимизацию с помощью карт Карно.
Для четырехразрядного кода карта Карно должна иметь 16 квадратов. Таблицей 30.1 заданы (определены) значения только десяти комбинаций. Значит, для шести квадратов карты Карно функция не определена, и их заполняют индексом «Х». В процессе минимизации вместо «Х» можно принимать «1», что значительно упрощает работу.
Дешифратор имеет 10 выходов. Значит, нужно сформировать десять
функций F. В общем, для каждой функции нужна своя карта Карно. Но в данном случае можно воспользоваться одной картой для всех десяти функций. На рис. 30.2, а и 30.2, б приведены карты Карно для функций F0 и F8, а на рис. 30.2, в – обобщенная карта Карно. На ней контур каждой функции обозначен соответствующей цифрой.
На основании минимизации получаем следующие алгебраические выражения для функций дешифратора:
;
;
;
;
;
;
;
;
;
.
Используя полученные выражения, можно построить схему дешифратора на элементах "НЕ" и "И". Но на практике такую схему чаще выполняют на элементах "НЕ" и "И-НЕ". При этом только на дешифрованном выходе будет уровень логического нуля (транзистор открыт), а на остальных выходах – уровень логической "1" (транзистор закрыт). Такая схема потребляет меньшую мощность.
В
микросхемном исполнении дешифраторы
выпускаются в составе всех серий цифровых
интегральных микросхем, например, К155
ИД1, КМ555
ИД18, 530
ИД14 и др.
Условное графическое обозначение
микросхемы К155
ИД3 приведено
на рис. 30.3, а.
Этот дешифратор имеет 4
входа и 16
выходов. Входы
и
- управляющие. Преобразование осуществляется
только при низком уровне на обоих
управляющих входах.
Преобразователи кодов (ПК) предназначены для преобразования одного двоичного кода в другой, например, кода Грея в код 8-4-2-1. Принцип построения ПК аналогичен принципу построения шифраторов и дешифраторов. В микросхемном исполнении ПК обозначают индексами ПР.
Мультиплексоры и демультиплексоры образуют группу коммутаторов. Они служат для избирательного переключения сигналов (каналов). Мультиплексоры передают один из "n" входных сигналов на выход устройства. Номер выбранного входа задается адресными сигналами (рис. 30.3, б). Например, трехзарядный адресный сигнал может управлять переключением восьми входов.
Демультиплексор (рис. 30.3, в) передает входной (цифровой) сигнал на один из "n" выходов. Номер выхода задается адресными сигналами.