
- •Введение
- •Тема 5. Электронные приборы
- •Лекция 18. Физические свойства полупроводниковых материалов. Диоды
- •1. Электропроводность металлов и диэлектриков
- •2. Электропроводность полупроводников
- •Электропроводность примесных
- •4. Электронно-дырочный переход
- •4.1. Электронно-дырочный переход при отсутствии внешнего электрического поля
- •Электронно-дырочный переход под воздействием внешнего электрического поля
- •5. Основные параметры и типы
- •Контрольные вопросы и задачи
- •Лекция 19. Транзисторы.
- •Классификация транзисторов
- •Биполярные транзисторы
- •Модуль коэффициента передачи определяется выражением
- •3. Полевые транзисторы
- •Общие сведения об igbt транзисторах
- •Интегральные микросхемы
- •Лекция 20. Силовые полупроводниковые приборы
- •Динисторы
- •Тиристоры
- •3. Симисторы
- •4. Статический индукционный транзистор
- •Тема 6. Электронные устройства лекция 21. Резистивные усилители сигналов низкой частоты
- •Классификация усилителей
- •Принцип работы резистивного усилителя
- •2.1 Схемы смещения и температурной стабилизации
- •Модуль коэффициента усиления определяется выражением:
- •Обозначим
- •4. Дифференциальный усилитель
- •При кu → ∞ коэффициент усиления схемы с оос определяется простым отношением
- •Частотные свойства оу
- •Электрические фильтры
- •Фильтр нижних частот
- •2.2.Фильтр верхних частот
- •Ачх фильтра приведена на рис. 22.5, б.
- •2.3 Полосовой фильтр
- •Избирательные усилители
- •Коэффициент передачи моста Вина в цепи пос определяется выражением
- •Лекция 23. Усилители мощности
- •Однотактный усилитель мощности
- •2. Двухтактный усилитель мощности
- •Лекция 24. Генераторы электрических сигналов
- •1. Назначение и классификация генераторов
- •2. Принципы построения генераторов
- •3. Генераторы гармонических колебаний
- •Трехточечные схемы генераторов
- •Лекция 25. Импульсные устройства
- •1. Общие сведения об импульсных сигналах
- •2. Электронные ключи
- •3. Компараторы
- •4. Формирующие цепи
- •Триггеры
- •Лекция 26. Генераторы импульсных сигналов
- •Мультивибраторы
- •2. Генераторы линейно изменяющегося напряжения
- •Если напряжение на входе оу постоянное, то на его выходе формируется линейно изменяющееся напряжение
- •Линейно убывает и в момент t3 принимает значение:
- •Далее значение uглин периодически изменяется от –0,79 в до 3,2 в, а uос от –2,32 в до 4,31 в.
- •Лекция 27. Источники питания электронных устройств
- •Общая характеристика вторичных
- •2. Однофазные выпрямители тока
- •2.1 Однофазные выпрямители
- •Трехфазные выпрямители
- •Управляемые выпрямители
- •3. Сглаживающие фильтры
- •3. Стабилизаторы напряжения
- •Лекция 28. Применение электронных устройств в технике птм
- •Электронные регуляторы напряжения
- •Электронные схемы управления стартером
- •3. Электронные системы зажигания
- •3.1. Основные этапы развития электронных систем зажигания
- •3.2. Датчики углового положения коленчатого вала двс
- •3.3. Коммутаторы
- •3.3.1. Коммутаторы с нормируемой скважностью
- •Тема 7. Цифровые устройства лекция 29. Введение в цифровую электронику
- •Общие сведения о цифровых сигналах
- •Основные операции и элементы
- •Основные теоремы алгебры логики
- •Булевы функции (функции логики)
- •Для элемента "или-не"
- •Для элемента "и-не"
- •Минимизация булевых функций
- •Лекция 30. Комбинационные устройства
- •1. Шифраторы
- •Дешифраторы, преобразователи кодов,
- •Сумматоры
- •Цифровые компараторы
- •Арифметико – логические устройства
- •Лекция 31. Триггеры
- •Общие сведения и классификация триггеров
- •Rs триггер на элементах “или – не”
- •Rs триггер на элементах “и – не”
- •Синхронные rs-триггеры
- •5. Универсальные триггеры
- •Лекция 32. Последовательностные устройства
- •1. Счетчики импульсов
- •Регистры
- •Цифровые запоминающие устройства
- •Лекция 33. Цифро-аналоговые и аналого- цифровые преобразователи
- •Цифро-аналоговые преобразователи
- •2. Аналого-цифровые преобразователи
- •2.1. Ацп последовательного счета.
- •2.1. Ацп поразрядного уравновешивания
- •Ацп одновременного считывания
- •Лекция 34. Микропроцессоры
- •Общие сведения
- •Структура микропроцессора
- •Секционированные микропроцессоры
- •Заключение
- •Тема 5. Электронные приборы 5
- •Тема 6. Электронные устройства 47
- •Тема 7. Цифровые устройства 169
Лекция 25. Импульсные устройства
1. Общие сведения об импульсных сигналах
Кроме напряжения синусоидальной формы в практике электротехники и электроники применяются напряжения других форм. Наиболее широко применяется импульсное напряжение. Импульсным называется прерывистое во времени напряжение (сигнал) любой формы. Под формой сигнала понимается закон изменения во времени напряжения или тока.
Широкое применение импульсных сигналов обусловлено рядом причин. Сочетанием импульсов и пауз легко передавать дискретную информацию. Импульсный сигнал оказался единственно приемлемой формой при создании радиолокации, он необходим для работы систем синхронизации, удобен для управления многими производственными процессами.
Импульсы применяются и для передачи непрерывной информации. В этом случае передаваемая информация может содержаться в значениях амплитуды, длительности или временного положения импульсов. Наличие пауз между импульсами позволяет уменьшить мощность, потребляемую от источника питания. Кроме того, во время паузы можно передавать информацию от других корреспондентов.
Наиболее широко применяются импульсы прямоугольной, пилообразной экспоненциальной и колокольной формы (рис. 25.1, а). Импульсы характеризуются
– амплитудой Um,
– длительностью τи,
– длительностью паузы τп,
– периодом повторения Т = τи + τn,
– частотой повторения F = 1/T,
– скважностью Qu = T/τu.
В реальных устройствах прямоугольные импульсы характеризуются также длительностью фронта τфр и среза τср. Фронт и срез определяют в течение нарастания или спада напряжения от 0,1 Um до 0,9Um.
2. Электронные ключи
Устройства, выполняющие обработку импульсных сигналов, называются импульсными устройствами. Среди различных импульсных устройств видное место занимают электронные ключи. Через идеальный разомкнутый ключ ток не протекает. Напряжение на идеальном замкнутом ключе равно нулю. Смена состояния ключа происходит под действием сигналов, подаваемых на один или нескольких входов.
Наиболее широкое применение в качестве электронных ключей нашел транзисторный каскад по схеме с ОЭ в классе усиления D (т.е. в ключевом режиме). Схема такого каскада приведена на рис. 25.1, б.
Рассмотрим работу схемы. В ключевом режиме транзистор может
находиться в одном из двух состояний – в состоянии отсечки или в состоянии насыщения.
В
состоянии отсечки ключ разомкнут. Через
транзистор протекает только малый
обратный ток Iкэ0.
Напряжение на участке коллектор-эмиттер
.
Мощность, теряемая в транзисторе в
режиме отсечки определяется произведением
Ротс
= Iкэ0·Uк
и мала, так как пренебрежимо мал ток
Iкэ0.
Чтобы
транзисторный ключ находился в разомкнутом
состоянии, необходимо подать на базу
отрицательное напряжение смещения,
т.е.
.
Для этого часто применяют дополнительный
источник смещения – Есм
и резистор R2
(эти элементы показаны на рис. пунктиром).
При таком включении напряжение смещения
создается двумя источниками Есм
и источником тока Iкэ0,
т.е.
.
(25.1)
Полагая Uб < 0, получаем:
,
откуда
.
(25.2)
Когда транзистор находится в состоянии насыщения, электронный ключ замкнут. Через транзистор протекает ток насыщения, значение которого ограничивается резистором Rк. Пренебрегая малым напряжением насыщения, можем записать:
.
(25.3)
Режим насыщения достигается при токе базы:
.
(25.4)
Как и в режиме отсечки, мощность, теряемая в транзисторе в режиме насыщения, мала, потому что мало напряжение насыщения Uн.
Ток базы в режиме насыщения создается источниками напряжения UВХ и ЕСМ. При этом участок база - эмиттер транзистора можно считать закороченным. Поэтому
.
Условие насыщения (13.4) принимает вид
.
(25.5)
Выражения(25.2), (25.3) и (25.5) позволяют выполнить расчет электронного ключа.
В настоящее время электронные ключи выпускаются в микросхемном исполнении. Например, микросхема К564КТ3 содержит четыре двунаправленных ключа, предназначеных для коммутации аналоговых и цифровых сигналов с током до 10 мА.