
- •Введение
- •Тема 5. Электронные приборы
- •Лекция 18. Физические свойства полупроводниковых материалов. Диоды
- •1. Электропроводность металлов и диэлектриков
- •2. Электропроводность полупроводников
- •Электропроводность примесных
- •4. Электронно-дырочный переход
- •4.1. Электронно-дырочный переход при отсутствии внешнего электрического поля
- •Электронно-дырочный переход под воздействием внешнего электрического поля
- •5. Основные параметры и типы
- •Контрольные вопросы и задачи
- •Лекция 19. Транзисторы.
- •Классификация транзисторов
- •Биполярные транзисторы
- •Модуль коэффициента передачи определяется выражением
- •3. Полевые транзисторы
- •Общие сведения об igbt транзисторах
- •Интегральные микросхемы
- •Лекция 20. Силовые полупроводниковые приборы
- •Динисторы
- •Тиристоры
- •3. Симисторы
- •4. Статический индукционный транзистор
- •Тема 6. Электронные устройства лекция 21. Резистивные усилители сигналов низкой частоты
- •Классификация усилителей
- •Принцип работы резистивного усилителя
- •2.1 Схемы смещения и температурной стабилизации
- •Модуль коэффициента усиления определяется выражением:
- •Обозначим
- •4. Дифференциальный усилитель
- •При кu → ∞ коэффициент усиления схемы с оос определяется простым отношением
- •Частотные свойства оу
- •Электрические фильтры
- •Фильтр нижних частот
- •2.2.Фильтр верхних частот
- •Ачх фильтра приведена на рис. 22.5, б.
- •2.3 Полосовой фильтр
- •Избирательные усилители
- •Коэффициент передачи моста Вина в цепи пос определяется выражением
- •Лекция 23. Усилители мощности
- •Однотактный усилитель мощности
- •2. Двухтактный усилитель мощности
- •Лекция 24. Генераторы электрических сигналов
- •1. Назначение и классификация генераторов
- •2. Принципы построения генераторов
- •3. Генераторы гармонических колебаний
- •Трехточечные схемы генераторов
- •Лекция 25. Импульсные устройства
- •1. Общие сведения об импульсных сигналах
- •2. Электронные ключи
- •3. Компараторы
- •4. Формирующие цепи
- •Триггеры
- •Лекция 26. Генераторы импульсных сигналов
- •Мультивибраторы
- •2. Генераторы линейно изменяющегося напряжения
- •Если напряжение на входе оу постоянное, то на его выходе формируется линейно изменяющееся напряжение
- •Линейно убывает и в момент t3 принимает значение:
- •Далее значение uглин периодически изменяется от –0,79 в до 3,2 в, а uос от –2,32 в до 4,31 в.
- •Лекция 27. Источники питания электронных устройств
- •Общая характеристика вторичных
- •2. Однофазные выпрямители тока
- •2.1 Однофазные выпрямители
- •Трехфазные выпрямители
- •Управляемые выпрямители
- •3. Сглаживающие фильтры
- •3. Стабилизаторы напряжения
- •Лекция 28. Применение электронных устройств в технике птм
- •Электронные регуляторы напряжения
- •Электронные схемы управления стартером
- •3. Электронные системы зажигания
- •3.1. Основные этапы развития электронных систем зажигания
- •3.2. Датчики углового положения коленчатого вала двс
- •3.3. Коммутаторы
- •3.3.1. Коммутаторы с нормируемой скважностью
- •Тема 7. Цифровые устройства лекция 29. Введение в цифровую электронику
- •Общие сведения о цифровых сигналах
- •Основные операции и элементы
- •Основные теоремы алгебры логики
- •Булевы функции (функции логики)
- •Для элемента "или-не"
- •Для элемента "и-не"
- •Минимизация булевых функций
- •Лекция 30. Комбинационные устройства
- •1. Шифраторы
- •Дешифраторы, преобразователи кодов,
- •Сумматоры
- •Цифровые компараторы
- •Арифметико – логические устройства
- •Лекция 31. Триггеры
- •Общие сведения и классификация триггеров
- •Rs триггер на элементах “или – не”
- •Rs триггер на элементах “и – не”
- •Синхронные rs-триггеры
- •5. Универсальные триггеры
- •Лекция 32. Последовательностные устройства
- •1. Счетчики импульсов
- •Регистры
- •Цифровые запоминающие устройства
- •Лекция 33. Цифро-аналоговые и аналого- цифровые преобразователи
- •Цифро-аналоговые преобразователи
- •2. Аналого-цифровые преобразователи
- •2.1. Ацп последовательного счета.
- •2.1. Ацп поразрядного уравновешивания
- •Ацп одновременного считывания
- •Лекция 34. Микропроцессоры
- •Общие сведения
- •Структура микропроцессора
- •Секционированные микропроцессоры
- •Заключение
- •Тема 5. Электронные приборы 5
- •Тема 6. Электронные устройства 47
- •Тема 7. Цифровые устройства 169
Лекция 24. Генераторы электрических сигналов
1. Назначение и классификация генераторов
Электронным генератором сигналов называют устройство, посредством
которого энергия внешних источников питания преобразуется в электрические колебания требуемой частоты, формы и мощности. Электронные генераторы входят в состав структурных схем многих электронных приборов. Они используются в универсальных измерительных приборах, осциллографах, микропроцессорных системах, телевизорах, радиоприемниках и т.д.
Классификация генераторов выполняется по ряду признаков: форме колебаний, их частоте, выходной мощности, назначению, типу используемого активного элемента, виду частотно-избирательной цепи обратной связи.
По назначению генераторы делятся на технологические, измерительные, медицинские, связные.
По форме колебаний их делят на генераторы гармонических и негармонических сигналов.
По выходной мощности генераторы делят на маломощные (менее 1 Вт), средней мощности (от 1 до 100 Вт) и мощные (более 100 Вт).
По частоте генераторы делят на инфранизкочастотные (менее 10 Гц), низкочастотные (от 10 Гц до 100 кГц), высокочастотные (от 100 кГц до 100 МГц), СВЧ (выше 100 МГц).
По используемым активным элементам генераторы делят на ламповые, транзисторные, на ОУ, на тунельных диодах, динисторах.
По типу частотно-избирательных цепей ОС различают генераторы LC, RC и RL типа.
2. Принципы построения генераторов
Обобщенная структурная схема генератора электрических сигналов должна содержать источник питания и преобразователь энергии источника в электрические колебания. Схема преобразователя приведена на рис. 24.1, а. Она содержит усилитель, частотно-избирательную цепь положительной обратной связи (ПОС), а также цепь ООС.
Обозначим модуль коэффициента усиления усилителя – К, модуль коэффициента передачи цепи ПОС – В, а модуль коэффициента передачи цепи ООС – М. По своему составу структурная схема генератора во многом соответствует схеме избирательного усилителя. Отличие схем заключается в количественных соотношениях для значений коэффициентов К, В и М, а также в требованиях к ФЧХ цепи ПОС.
Определим требования к этим параметрам генератора. Для этого функционирование генератора разделим на два этапа: этап возбуждения и этап стационарного режима. На этапе возбуждения в генераторе возникают колебания, и амплитуда их постепенно нарастает (рис. 24.1, б). На втором этапе амплитуда колебаний стабилизируется, и генератор переходит в стационарный режим.
На этапе возбуждения колебаний основную роль играет цепь ПОС. Эта цепь определяет условия возбуждения колебаний, их частоту и скорость нарастания амплитуды. После возникновения колебаний их амплитуда нарастает до тех пор, пока действие ООС не ограничит значение К. На этапе возбуждения цепь ООС не работает.
Ц епь ПОС, как правило, выполняется на пассивных R, L, C элементах, поэтому она имеет потери. Эти потери компенсируются усилителем.
Рассмотрим
процессы возникновения и установления
колебаний на выходе генератора.
При включении питания в схеме возникнут
колебания, обусловленные переходными
процессами в транзисторах или ОУ, зарядом
емкостей или индуктивностей. Эти
колебания поступают на вход усилителя
в виде сигнала
На выходе усилителя
формируется сигнал
Сигнал
поступает в цепь ПОС и ослабляется в
раз. На выходе цепи ПОС он имеет значение
и вновь поступает на вход усилителя, т.е.
(24.1)
Из
(24.1) следует, что если
амплитуда колебаний на выходе усилителя
будет нарастать. При
колебания затухают. Когда
,
(24.1) принимает вид:
(24.2)
При соблюдении условия (24.2) схема генератора переходит в ста-ционарный режим. Условие (24.2) распадается на два условия, которые называются условиями баланса амплитуд и фаз:
(24.3)
Условие
баланса амплитуд показывает, что в
режиме возбуждения колебаний коэффициент
усиления усилителя должен быть больше
коэффициента затухания цепи ПОС, т.е.
Для
перехода к стационарному режиму в схему
включается цепь с ООС. Она изменяет
значение
до точного соблюдения
баланса амплитуд.
Условие баланса фаз означает, что полный фазовый сдвиг в замкнутом контуре генератора должен быть равен 2nπ, где n – любое целое число (как правило, n=1). Условие баланса фаз позволяет определять частоту генерируемых колебаний. Если баланс фаз выполняется только на одной частоте, то генерируются гармоническое колебание. Если условие баланса фаз выполняется для ряда частот, то колебания будут негармоническими.