Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matematika.docx
Скачиваний:
7
Добавлен:
16.04.2019
Размер:
42.29 Кб
Скачать

Случайные величины

Случайной называется величина, которая в результате испытаний принимает то или иное возможное значение, за ранее неизвестное, меняющееся от испытания к испытанию и зависящее от случайных обстоятельств. Примеры: размер обрабатываемой детали, погрешность результата измерения какого-либо параметра изделия или среды.

Два типа: дискретные и непрерывные.

Дискретной наз случ величина, кринимающая конечное или бесконечное счетное множ знач. Например: частота попаданий при трех выстрелах, число брака в партии изделий.

Законом распределения случайной величины наз всякое соотношение, устанавливающее связь между возможными знач случайной величины и соответствующими им вероятностями.

Закон распределения дискретной случайной величины можно задать: таблично, аналитически и графически.

Числовые характеристики дискретной случайной величины:

Математическим ожиданием дискретной случайной величины наз сумма произведений ее возможных знач не соответствующие им вероятности М(х)=

Свойства:

Мат ожид постоянной равно самой постоянной: М(с)=с

Постоянный множ можно выносить за знак мат ожид: М(сх)=сМ(х)

Мат ожид произведения двух независимых случ величин равно произведению их мат ожид: М(ху)=М(х)М(у)

Мат ожид суммы двух случ величин (зависимых или независимых) равно сумме мат ожид слагаемых: М(х+у)=М(х)+М(у)

Дисперсией (рассеянием) случайной величины наз мат ожид квадрата ее отклонения от ее мат ожид: D(x)=M(x-M(x)

Свойства:

Дисперсия постоянной величины С равна нулю: D(с)=0

Постоянный множ можно выносить за знак дисперсии, возведя его в квадрат: D(cx)= D(x)

Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий: D(x+y)=D(x)+D(y)

Дисперсия разности двух независимых случ величин равна сумме их дисперсий: D(x-y)=D(x)+D(y)

Биноминальное распределение – это распр вероятностей возможных чисел появления соб А при n независимых испытаниях, в каждом из которых соб А можно осущ с одной и той же вероятностью P(A)=p=const. Кроме события А может произойти также противоположное событие , вероятность которого Р( =1-р=q

Непрерывной наз величина, множ знач которой заполняет сплошь некоторый числовой промежуток.

Функция распределения – функ, характ распределению случ величины или случ вектора.

Свойства:

Не убывает: если < , то

Существуют пределы и

В любой точке непрерывна слева

Плотность вероятности – один из способов задания вероятностей меры на евклидовом пространстве

Свойства:

Плотность вероятности определена почти всюду. Если f явл плотностью вероятн Р и f(x)=g(x) почти всюду.

Интеграл от плотности по всему пространству равен единице

Числовые характ непрерывных случ величин:

Мат ожид непрерывной случ величины х, возможные знач которой принадлежат отрезку [a;b] наз определенный интеграл.

Нормальное распределение (распр Гаусса) – распределение вероятностей, которое задается функ плотности распр.

Правило трех сигм:

Пусть имеется нормально распределенная случ величина Е с мат ожид, равным а и дисперсией . Опред вероятность попадания Е в интервал (а-3 ; а+3 ), то есть вероятность того, что Е принимает знач, отличное от мат ожид не более, чем на три среднеквадр отклонения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]