
- •Общая геология
- •Учебное пособие для иностранных студентов
- •Введение
- •Строение и состав земли
- •Фигура и размеры Земли
- •1.2. Геофизические поля и физические свойства Земли
- •1.3. Внутреннее строение Земли
- •1.4. Агрегатное состояние вещества и химический состав геосфер
- •2. Геологические процессы и документы
- •Эндогенные – это внутренние процессы; экзогенные – внешние, поверхностные, для них источник энергии – это энергия Солнца и сила тяжести (гравитационное поле Земли).
- •2.1. Минералы
- •2.1.1. Формы нахождения минералов в природе
- •2.1.2. Классификация минералов
- •2.2. Горные породы
- •2.2.1. Магматические горные породы
- •2.2.2. Осадочные горные породы
- •2.2.3. Метаморфические породы
- •Экзогенные процессы
- •2.3.1. Выветривание
- •2.3.1.1. Физическое выветривание
- •2.3.1.2. Химическое выветривание
- •2.3.1.3. Органическое выветривание
- •2.3.1.4. Элювий и кора выветривания
- •2.3.1.5. Геологическая роль выветривания
- •2.3.2. Геологическая деятельность ветра
- •2.3.2.1. Типы ветров и воздушных потоков
- •Шкала скоростей ветра
- •2.3.2.2. Виды ветров
- •2.3.2.3. Геологическая работа ветра
- •2.3.2.3.1. Разрушительная работа ветра
- •2.3.2.3.2. Перенос материала ветром
- •2.3.2.3.3. Эоловая аккумуляция
- •2.3.2.4. Типы пустынь
- •2.3.3. Геологическая деятельность поверхностных текучих вод
- •2.3.3.1. Продольный профиль динамического равновесия
- •2.3.3.2. Деятельность временных водотоков
- •2.3.3.3. Деятельность постоянных водотоков
- •2.3.3.4. Стадии развития речной долины
- •2.3.3.5. Речные террасы
- •2.3.4. Геологическая деятельность подземных вод
- •2.3.4.1. Формы существования воды в горных породах
- •2.3.4.2. Коллекторские свойства горных пород
- •2.3.4.3. Происхождение и состав подземных вод
- •2.3.4.4. Условия залегания подземных вод. Водоносные горизонты
- •2.3.4.5. Воды нефтяных и газовых месторождений
- •2.3.4.6. Карстовые процессы
- •2.3.4.7. Отложения подземных вод
- •2.3.4.8. Оползни
- •2.3.5. Геологическая деятельность снега, льда
- •2.3.5.1. Образование и типы ледников
- •2.3.5.2. Геологическая работа ледников
- •2.3.5.3. Оледенения в истории Земли
- •2.3.6. Геологическая деятельность моря
- •2.3.6.1. Строение морского дна и отделы моря
- •2.3.6.2. Физические и химические свойства морской воды
- •2.3.6.3. Биономические зоны моря
- •2.3.6.4. Разрушительная работа моря
- •2.3.6.5. Перенос продуктов разрушения
- •2.3.6.6. Накопление осадков
- •2.3.7. Геологическая деятельность озер и болот
- •2.4. Эндогенные процессы
- •2.4.1. Магматизм
- •2.4.1.1. Общая характеристика магматизма
- •2.4.1.2. Типы магм
- •2.4.1.3. Причины многообразия магматических пород
- •Интрузивный магматизм
- •Эффузивный магматизм
- •Тектонические движения и деформации земной коры
- •Дислокации осадочных пород
- •Землетрясения
- •2.4.3. Метаморфизм и метасоматоз
- •2.4.3.1. Термальный метаморфизм
- •2.4.3.2. Динамометаморфизм
- •2.4.3.3. Метасоматоз
- •2.4.3.4. Типы и условия проявления метаморфизма
- •3. Геологическое летоисчисление (геохронология)
- •3.1. Относительное летоисчисление
- •3.2. Абсолютное летоисчисление
- •3.3. Геохронологическая и международная стратиграфическая шкалы
- •Общая стратиграфическая шкала докембрия
- •4. Строение тектоносферы и земной коры
- •4.1. Модели развития тектоносферы и земной коры
- •4.1.1. Тектонический цикл с позиции фиксизма
- •4.1.2. Тектонический цикл с позиции мобилизма
- •4.2. Основные тектонические структуры земной коры
- •4.2.1. Срединно-океанические хребты
- •4.2.2. Геосинклинали и геосинклинальные зоны
- •4.2.3. Платформы
- •4.3. Восстановление тектонического режима развития земной коры
- •5. Краткая история формирования земной коры
- •Список литературы
- •Общая геология Эндогенные и экзогенные процессы
3. Геологическое летоисчисление (геохронология)
Слова и словосочетания
геохронологическая шкала |
период полураспада |
эратема, система, отдел, ярус |
руководящие формы |
индексы |
стратиграфический метод |
кайнозойская, мезозойская эры |
фанерозойский эон |
окаменелости |
четвертичная система |
палеонтологический метод |
эра, период, эпоха, век |
при определении возраста горных пород существуют два подхода. В первом случае определяют относительный возраст пород, то есть выясняют, что было раньше, а что – позже (что древнее, а что моложе). Во втором случае определяют абсолютный возраст пород, который выражается в годах.
3.1. Относительное летоисчисление
При определении относительного возраста пород используют несколько методов.
По взаимоотношению геологических тел. При этом методе возраст осадочных горных пород определяется очень просто: при первичном, ненарушенном залегании те пласты, которые расположены ниже в разрезе толщ являются более древними, а те, которые выше, – более молодыми. Такой способ определения относительного возраста получил название стратиграфического метода (рис. 74).
При определении относительного возраста осадочных горных пород широко применяется также палеонтологический метод, использующий остатки ранее живших организмов (окаменелостей). Если слои осадочных горных пород
с
одержат
один и тот же комплекс окаменелостей
фауны и флоры, то такие слои одновозрастные
(рис.
75). Для более точного определения
относительного возраста палеонтологическим
методом используются руководящие
формы
организмов, то есть организмы, которые
жили очень короткий отрезок времени,
но были широко распространены на Земле
(рис. 75). Относительный
возраст интрузивных тел определяется
по простому правилу: интрузивные тела
моложе тех пород, которые они прорывают
и метаморфизуют, и древнее пород, которые
перекрывают интрузивные тела (рис. 76).
Шток гранитов моложе толщи I
и древнее толщи II
и дайки диабазов. Дайка диабазов моложе
толщи I
и II,
моложе штока гранитов и древнее толщи
III.
3.2. Абсолютное летоисчисление
При абсолютном летоисчислении возраст горных пород определяется в годах. При этом используются две группы методов:
1. По скорости осадконакопления. Например, в случае ленточных глин пара слоев накапливается за 1 год. Подсчитав количество пар слойков, можно определить то время, за которое образовалась толща глин.
2. По скорости радиоактивного распада элементов. При этом используются радиоактивные изотопы урана, тория, рубидия, калия, углерода и водорода – 238U, 235U, 232Th, 87Rb, 40K, 14C, 3H и многие другие изотопы.
Измерение изотопного возраста минералов и горных пород основано на использовании явления радиоактивности. Для коротких диапазонов времени используются тритий (ЗН) и радиоуглерод (14С); для длительных диапазонов – методы уран-свинцовый (238U/206Pb и 235U/207Pb), свинцово-свинцовый (207Pb/206Pb), торий-свинцовый (232Th/208Pb), калий-аргоновый (40K/40Ar) и рубидий-стронциевый (87Rb/87Sr). Может быть использован также подсчет следов распада (треков) с дополнительной специальной бомбардировкой образца нейтронами.
Тритий образуется при столкновении атомов водорода 1Н с нейтронами. Его период полураспада равен всего 12,5 года, поэтому он применяется для установления характера движения подземных вод и перемешивания морской воды или определение возраста снега в снежных полях.
Радиоуглерод, образующийся из азота в верхних слоях атмосферы, распадается с периодом полураспада 5730 лет. Он используется преимущественно для определения возраста древесины, древесного угля, торфа и углеродсодержащих организмов.
14C14N+ T=5730 40 лет (Т – период полураспада элемента)
Область применения уран-торий-свинцовых методов была первоначально ограничена уранинитом и урановой смолкой. Затем расширена за счет других минералов, циркона с очень небольшим содержанием урана и тория. Атомы 238U, 235U и 232 Th распадаются с разными скоростями до изотопов, соответственно, 206Pb, 207Pb, 208Pb.
238U 206Pb + 8He4 T = 4.468 млрд лет
235U 207Pb + 7 He4 Т = 0.7038 млрд лет ( Т - период
232 Th 208Pb + 6He4 Т = 14.008 млрд лет полураспада)
Разделение этих изотопов производится на масс-спектрометре. Отношения изотопов обеспечивают определение геологического возраста. При этом используются графики конкордии.
Калий-аргоновый метод. Один из изотопов калия переходит в аргон со скоростью, которая подходит для определения возраста горных пород не только по отдельным калиевым минералам, но и по валовой пробе 40K 40Ar + e Т = 1.3 млрд лет.
Преимущество этого метода состоит в том, что калий входит в состав более 100 минералов, включая такие широко распространенные, как плагиоклазы, калиевые полевые шпаты, слюды и др.
Главная проблема заключается в утечке радиогенного аргона или загрязнении атмосферным аргоном.
Рубидий-стронциевый метод основан на распаде рубидия до стабильного стронция с периодом полураспада около 5 млрд лет.
87Rb 87Sr + Т = 4.99 млрд лет
Отношение 87Rb/87Sr, измеренное по валовой пробе, должно быть нанесено на график для определения изохрон.
Древнейшие из известных на Земле породы имеют возраст почти 3,8 млрд лет; это меньше, чем возраст некоторых метеоритов (4,7 млрд лет) и некоторых лунных пород (до 4,7 млрд лет). Соответственно, возраст Солнечной системы примерно 5 млрд лет.