
- •80. Рентгено-радиометрический каротаж.
- •81. Нейтрон-нейтронный каротаж.
- •82. Нейтронный гамма-каротаж. (нгк и нгкс).
- •83. Активационный каротаж (нак).
- •84. Гамма-нейтронный каротаж (гнк).
- •86. Сейсмокаротаж (ск)
- •88. Инклинометрия скважин
- •89. Кавернометрия скважины
- •90. Профилеметрия скважины
- •91. Резистивиметрия скважины
- •92. Отбор образцов пород
- •93.Наклонометрия скважины
- •94. Мюонный метод
- •95.Термометрия скважины
88. Инклинометрия скважин
Для определения на любой глубине угла отклонения оси скважины от вертикали и азимута ее искривления по отношению к устью применяются специальный прибор - инклинометр и оборудование обычной каротажной станции. В необсаженных скважинах используются электрические инклинометры. В корпусе такого инклинометра помещается свободно подвешенная рамка, которая по отвесу располагается горизонтально. На ней имеется буссоль для измерения азимута и указатель наклона. Стрелка буссоли и указатель наклона рамки скользят по реохордам азимутов и углов наклона, которые поочередно можно подключать к токовой линии инклинометра. Стрелка и указатель передают напряжение с реохордов, пропорциональное азимуту или углу наклона.
В скважинах, обсаженных металлическими трубами, измерение азимута и угла проводят гироскопическими инклинометрами. Принцип работы этих приборов основан на свойстве гироскопа (устройства, маховик которого быстро вращается от специального электромотора) сохранять неизменной в пространстве ось вращения. В инклинометре два гироскопа: один для измерения азимутов, другой - для измерения углов наклона. С помощью особых электрических схем определяются углы, составленные инклинометром (направлением скважины) с осями вращения гироскопов.
Точность измерения углов инклинометром достигает 30', а азимутов - нескольких градусов. Если учесть, что глубокая скважина на разных глубинах может отклоняться от вертикали на сотни метров, а по азимуту превышать 360, то нетрудно понять практическое значение инклинометрии. Особенно необходима инклинометрия в скважинах наклонного бурения.
89. Кавернометрия скважины
Измерение среднего диаметра скважины.
Результатом измерения является кавернограмма — кривая, отражающая изменение диаметра скважины с глубиной.
По ряду геологических и технических причин фактический диаметр скважины отличается от номинального диаметра, т. е. от диаметра используемого долота. Увеличение диаметра обычно наблюдается при пересечении скважиной глин, глинистых пород, солей; уменьшение (в результате образования глинистой корки) — напротив проницаемых песчаников; номинальный диаметр — напротив плотных песчаников, известняков, доломитов.
Это обстоятельство позволяет использовать данные кавернометрия скважины для уточнения геологического разреза скважины и выделения в ней пластов-коллекторов.
Кавернометрия скважины используется также для оценки объема затрубного пространства и необходимого количества цемента при цементировании обсадной колонны, для контроля технического состояния ствола скважины, при выборе участков установки пакерующего устройства пластоиспытателя и башмака обсадных труб, при интерпретации каротажных данных, особенно БКЗ и РК.
При специальных исследованиях — выделении трещинных и кавернозных коллекторов и определении толщины глинистой корки — применяются микрокавернометрия и коркометрия.
Каверны — пустоты в горных породах размером более 1 мм. Образуются при выщелачивании осадочных пород; в богатых газообразными компонентами эффузивных породах могут возникать при их застывании. Наиболее широко распространены каверны в карбонатных коллекторах, где они могут составлять существенную долю общей емкости.