
- •Л.С. Коновалова, ю.А. Загромов теоретические основы теплотехники. Теплопередача
- •Введение
- •1. Основные понятия и определения
- •1.1. Способы переноса теплоты
- •1.2. Температурное поле. Градиент температуры. Тепловой поток
- •1.3. Законы переноса теплоты
- •1.4. Дифференциальное уравнение теплопроводности
- •1.5. Условия однозначности
- •Контрольные вопросы и задания
- •2. Теплопроводность и теплопередача при стационарном режиме
- •2.1. Теплопроводность плоской стенки при граничных условиях первого рода
- •2.2. Теплопроводность цилиндрической стенки при граничных условиях первого рода
- •2.3. Теплопроводность плоской и цилиндрической стенок при граничных условиях третьего рода (теплопередача)
- •2.4. Критический диаметр тепловой изоляции
- •Контрольные вопросы и задания
- •Задачи для самостоятельного решения
- •3. Теплопроводность тел с внутренними источниками тепла при стационарном режиме
- •3.1. Теплопроводность однородной пластины
- •3.2. Теплопроводность однородного цилиндрического стержня
- •3.3. Теплопроводность цилиндрической стенки
- •Контрольные задания
- •Задачи для самостоятельного решения
- •Решение
- •4. Теплообмен излучением
- •4.1. Теплообмен излучением между твердыми телами, разделенными диатермичной средой
- •4.1.1. Основные понятия и законы теплового излучения
- •4.1.2. Связь лучистых потоков
- •4.1.3. Теплообмен излучением между двумя телами, произвольно расположенными в пространстве
- •4.1.4. Теплообмен излучением между двумя бесконечными параллельными пластинами
- •4.1.5. Теплообмен излучением между двумя телами, одно из которых расположено внутри другого
- •4.2. Особенности излучения газов
- •Контрольные вопросы, задания и задачи для самостоятельного решения
- •Примеры решения задач
- •Решение
- •Решение
- •5. Теплопередача со сложным теплообменом на поверхностях стенки при стационарном режиме. Интенсификация теплопередачи
- •5.1. Теплопередача через плоскую стенку со сложным теплообменом
- •5.2. Теплопередача через цилиндрическую стенку со сложным теплообменом
- •5.3. Интенсификация теплопередачи
- •5.3.1. Теплоотдача поверхности с прямыми ребрами
- •5.3.2. Теплоотдача оребренных труб
- •5.3.3. Теплопередача через оребренные стенки
- •Контрольные вопросы и задания
- •Примеры решения задач
- •Решение
- •Решение
- •6. Дифференциальные уравнения теплообмена и основы теории подобия и моделирования процессов
- •6.1. Дифференциальные уравнения теплообмена
- •6.2. Основы теории подобия
- •6.3. Моделирование теплоотдачи
- •6.4. Физические особенности процесса теплоотдачи
- •4. Теплофизические свойства жидкости
- •5. Геометрические размеры, форма, ориентация поверхности теплообмена
- •Контрольные вопросы и задания
- •Примеры решения задач
- •Решение
- •Решение
- •7. Теплоотдача в однофазной среде
- •7.1. Теплоотдача при свободном движении жидкости
- •7.2. Теплоотдача при продольном омывании поверхности вынужденным потоком жидкости
- •7.3. Теплоотдача при вынужденном течении жидкости в трубах и каналах
- •7.4. Теплоотдача при поперечном обтекании труб
- •Контрольные вопросы и задания
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •8. Теплоотдача при фазовых превращениях
- •8.1. Теплоотдача при кипении
- •8.2. Теплоотдача при конденсации
- •Контрольные вопросы и задания
- •Примеры решения задач
- •Решение
- •Решение
- •9. Теплообменные аппараты
- •9.1. Классификация теплообменников
- •9.2. Основные уравнения для расчета теплообменников
- •9.3. Расчет теплообменников
- •Прямоток
- •Контрольные вопросы и задания
- •Пример решения задачи
- •Решение
- •Литература
- •Оглавление
Контрольные вопросы и задания
1. Для парового котла высотой h=14 м с температурой поверхности обмуровки tc=40оС и температурой воздуха в цехе tж=20оС определите режим течения жидкости (воздуха) в пограничном слое при х= h.
Какие режимы течения жидкости имеют место по высоте поверхности обмуровки и какова протяженность участков с этими режимами?
2. Выведите формулы (7.12) и (7.13) с учетом (7.8) – (7.10) и уравнения теплового баланса Qэкв=Qк+т+Qл.
3. Можно ли уравнениями (7.20) и (7.21) воспользоваться для расчетов коэффициентов теплоотдачи:
а) при омывании труб продольным потоком жидкости;
б) при расчетах теплообмена между обшивкой летящего самолета и потоком воздуха, омывающего поверхность обшивки?
4. Какие режимы и при каких условиях имеют место в случае вынужденного течения жидкости в трубах? Сравните по коэффициенту теплоотдачи ламинарный и турбулентный режимы, вязкостный и вязкостно-гравитационный режимы. Дайте обоснование ответа.
5. Запишите формулу для определения коэффициента теплоотдачи при стабилизированном турбулентном течении жидкости в трубе. Подставьте в нее значения чисел Nu=d/, Re=wd/v, Pr=v/a=(vcp)/ и сделайте анализ зависимости
=f (d, w, , v, cp, ). |
|
6. Сравните коэффициенты теплоотдачи при омывании трубы поперечным вынужденным потоком жидкости для угла атаки =90о и =60о. Во сколько раз они отличаются?
7. При каком режиме течения жидкости на теплоотдачу влияет плотность расположения труб в пучке?
Примеры решения задач
Задача № 1. Определить тепловые потери от паропровода диаметром d=200мм и длиной =20 м, проложенного в закрытом помещении с температурой воздуха tж=30оС. Температура наружной стенки паропровода tс=150оС.
Учесть потерю теплоты излучением. Степень черноты поверхности паропровода принять ε=0,9.
Решение
Здесь имеет место теплоотдача при естественной конвекции в большом объеме. При температуре tж=30оС для воздуха из табл.1 приложения имеем:
Prж=0,701,
при tс=150оС находим Prс=0,683.
Температурный коэффициент объемного расширения воздуха вычисляем по формуле
|
|
Находим произведение
|
|
Так как (Grжd·Prж)<109, то средний коэффициент теплоотдачи рассчитываем по уравнению (7.7):
|
|
|
|
Сомножитель
для воздуха,
практически равен 1, поэтому для газов
им можно пренебрегать.
Потери тепла конвекцией
|
|
излучением
|
|
Суммарные тепловые потери паропровода составляют
Q=Qк+Qл=24838 Вт. |
|
Задача № 2. Определить плотность теплового потока, проходящего через вертикальную щель толщиной δ=10 мм, заполненную воздухом. Температура горячей поверхности t1=180оС, степень черноты ε1=0,9, холодной – t2=60оС, ε2=0,5.
Решение
Между поверхностями, разделенными воздушной прослойкой, теплота передается теплопроводностью, конвекцией и излучением и может быть рассчитана по формуле
|
|
где λэкв=λ εк+qл δ/(t1-t2).
При средней
температуре воздуха
из табл. 1 приложения находим
Определяем температурный коэффициент объемного расширения
|
|
и рассчитываем произведение чисел подобия
|
Коэффициент конвекции
Рассчитываем приведенную степень черноты поверхностей
и плотность лучистого потока
Тогда
Задача № 3.
По трубке внутренним диаметром 8 мм и
длиной
=5м
движется вода со скоростью w=1,2м/с.
Температура поверхности трубки tс=90оС,
средняя температура воды в ней
=30оС.
Определить коэффициент теплоотдачи и тепловой поток, передаваемый от стенки трубки к воде.