- •1. Состав компьютерной системы
- •2. Функции операционной системы. Операционная система как расширенная машина и менеджер ресурсов
- •3. Этапы развития операционных систем
- •4. Типы ос
- •5. Принципы разработки и основные функции современных ос
- •Особенности методов построения
- •6. Рыночные требования, предъявляемые к ос
- •7. Cisc и risc процессоры, конвейерная обработка (микропроцессор, разрядность микропроцессора)
- •8. Транспьютер. Векторные и матричные процессоры.
- •9. Персональный компьютер, рабочая станция, современные периферийные устройства.
- •10. Машинный язык, компилятор, ооп.
- •12. Основные понятия, концепция ос
- •13. Ядро ос. Основные понятия (монолитные системы, многоуровневые системы, виртуальные машины).
- •14. Ядро ос. Модель клиент-сервер и микроядро.
- •15. Классификация ос
- •16. Мультипрограммирование или многозадачность, критерии организации
- •17. Мультипроцессорность: сложность планирования загрузки процессоров, конфликты доступа к общим ресурсам
- •18. Процессы. Основные понятия, состояния процессов
- •19. Обработка прерываний, вектор прерывания
- •20. Алгоритмы планирования процессов
- •21. Создание процессов
- •Идентификатор процесса (pid)
- •Идентификатор родительского процесса (ppid)
- •Поправка приоритета (ni)
- •Терминальная линия (tty)
- •Реальный (uid) и эффективный (euid) идентификаторы пользователя
- •Реальный (gid) и эффективный (egid) идентификаторы группы
- •Образ, дескриптор, контекст процесса
- •22. Идентификаторы
- •Идентификатор процесса (pid)
- •Идентификатор родительского процесса (ppid)
- •Реальный (uid) и эффективный (euid) идентификаторы пользователя
- •Реальный (gid) и эффективный (egid) идентификаторы группы
- •Привилегированный пользователь
- •23. Системные вызовы для управления процессами
- •24. Форматы исполняемых файлов
- •25. Основные команды Unix для управления процессами
- •26. Память. Типы адресов
- •27. Методы распределения памяти между процессами без использования внешнего накопителя
- •Распределение памяти фиксированными разделами
- •Распределение памяти разделами переменной величины
- •Перемещаемые разделы
- •28. Методы распределения памяти между процессами с использованием внешнего накопителя
- •29. Виртуальная память. Способы организации виртуальной памяти Понятие виртуальной памяти
- •Страничное распределение
- •Сегментное распределение
- •Странично-сегментное распределение
- •30. Организация виртуальной памяти при меньшем размере оперативной памяти. Алгоритмы подкачки
- •31. Иерархия запоминающих устройств. Принцип кэширования данных
- •32. Управление файлами и внешними устройствами
- •33. Физическая структура файловой системы
- •34. Физическая структура файловой системы
- •36. Логическая организация файловой системы (типы файлов, иерархическая структура каталогов)
- •37. Структура файловой системы unix.( каталоги root /etc /dev /usr /var /prog.)
- •38. Логическая организация файловой системы ms windows (program files,documents and settings, windows,win nt)
- •40. Механизм защиты файлов в файловой системе oc unix (код защиты файла, дополнительные разряды кода защиты файла. Команды управления кодом защиты (доступ к файлу))
- •41. Многотомные фс (монтируемые фс, распределенные фс)
- •42. Специальные файлы (файлы устройств)
- •43. Дополнительные возможности файловых систем (дисковые квоты, резервное копирование, журнализируемые файловые системы)
- •1) Дисковая квота.
- •2) Резервное копирование
- •3) Журналируемые файловые системы
- •44. Сетевые интерфейсы и протоколы
- •45 Топология сети
- •46. Семиуровневая модель взаимосвязи открытых систем - iso (osi)
- •47. Компьютерные сети. Локальные сети. Глобальные сети с коммутацией пакетов. Vpn.
- •Принцип коммутации пакетов с использованием техники виртуальных каналов
- •48. Межсетевое взаимодействие (шлюзы, мультиплексирование стеков протоколов, вопросы реализации).
- •49. Сравнение вариантов организации взаимодействия сетей
- •50. Сущность маршрутизации. Протоколы настройки маршрутизации в сетях tcp/ip (протоколы длины вектора, протоколы состояния канала, протоколы политики маршрутизации)
- •Протокол состояния связей ospf
- •51. Сетевые службы и протоколы (dhcp, snmp, dns)
- •52. Межсетевые экраны (FireWall), демилитаризованная зона (dmz), трансляция сетевых адресов (nat, Masquerade)
- •55. Открытые системы на базе ос unix
- •56. Системные журналы. Проверка и восстановление файловой системы
- •57. Система X-Window. Преимущества X-Window. Отличие X-Window от ms-Window
26. Память. Типы адресов
Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Распределению подлежит вся оперативная память, не занятая операционной системой. Обычно ОС располагается в самых младших адресах, однако может занимать и самые старшие адреса. Функциями ОС по управлению памятью являются: отслеживание свободной и занятой памяти, выделение памяти процессам и освобождение памяти при завершении процессов, вытеснение процессов из оперативной памяти на диск, когда размеры основной памяти не достаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место, а также настройка адресов программы на конкретную область физической памяти.
Типы адресов
Для идентификации переменных и команд используются символьные имена (метки), виртуальные адреса и физические адреса (рисунок 2.7).
Символьные имена присваивает пользователь при написании программы на алгоритмическом языке или ассемблере.
В
иртуальные
адреса вырабатывает транслятор,
переводящий программу на машинный язык.
Так как во время трансляции в общем
случае не известно, в какое место
оперативной памяти будет загружена
программа, то транслятор присваивает
переменным и командам виртуальные
(условные) адреса, обычно считая по
умолчанию, что программа будет размещена,
начиная с нулевого адреса. Совокупность
виртуальных адресов процесса называется
виртуальным
адресным пространством.
Каждый процесс имеет собственное
виртуальное адресное пространство.
Максимальный размер виртуального
адресного пространства ограничивается
разрядностью адреса, присущей данной
архитектуре компьютера, и, как правило,
не совпадает с объемом физической
памяти, имеющимся в компьютере.
Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены или будут расположены переменные и команды. Переход от виртуальных адресов к физическим может осуществляться двумя способами. В первом случае замену виртуальных адресов на физические делает специальная системная программа - перемещающий загрузчик. Перемещающий загрузчик на основании имеющихся у него исходных данных о начальном адресе физической памяти, в которую предстоит загружать программу, и информации, предоставленной транслятором об адресно-зависимых константах программы, выполняет загрузку программы, совмещая ее с заменой виртуальных адресов физическими.
Второй способ заключается в том, что программа загружается в память в неизмененном виде в виртуальных адресах, при этом операционная система фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Второй способ является более гибким, он допускает перемещение программы во время ее выполнения, в то время как перемещающий загрузчик жестко привязывает программу к первоначально выделенному ей участку памяти. Вместе с тем использование перемещающего загрузчика уменьшает накладные расходы, так как преобразование каждого виртуального адреса происходит только один раз во время загрузки, а во втором случае - каждый раз при обращении по данному адресу.
В некоторых случаях (обычно в специализированных системах), когда заранее точно известно, в какой области оперативной памяти будет выполняться программа, транслятор выдает исполняемый код сразу в физических адресах.
Преобразование адресов из одного типа в другой
1. пишем прогу -символьные -компилирование -физич адрес
2. символ -физич напр с-мы реал времени, те когда заранее известны усл вып программы
