
- •Вопрос 1. История представлений о механизмах психики.
- •Вопрос 2. Активный и реактивный подходы к рассмотрению поведения.
- •Вопрос 3. Создание Павловым учение о внд
- •Вопрос 4. Основные принципы физиологии внд
- •Вопрос 5. Классификация безусловных рефлексов
- •Вопрос 6. Инстинкты.
- •Вопрос 7. Импринтинг.
- •Вопрос 8. Привыкание
- •Вопрос 9. Классификация условных рефлексов
- •Вопрос 10. Стадии выработки условных рефлексов
- •Различают три стадии образования условного рефлекса:
- •1. Первая стадия генерализации, или обобщенного ответного действия.
- •2. Вторая стадия концентрации, или специализации условного рефлекса.
- •3. Третья стадия стабилизации условного рефлекса, или формирования навыка.
- •Вопрос 11. Внешнее торможение.
- •Вопрос 12. Внутреннее торможение.
- •Вопрос 13. Иррадиация и концентрация возбуждения и торможения.
- •Вопрос 14. Взаимная пространственная индукция возбуждения и торможения.
- •15. Взаимная временная индукция возбуждения и торможения.
- •Вопрос 14,15. Взаимная пространственная и временная индукция возбуждения и торможения
- •Вопрос 16. Генерализация и специализация условных рефлексов
- •Вопрос 17. Зависимость обучения от биологической адекватности методики и биологической значимости раздражителя.
- •Вопрос 18, 19. Настроечный механизм условного рефлекса и запускающий механизм условного рефлекса.
- •Вопрос 20. Классический и инструментальный ур
- •Вопрос 20. Классический и инструментальный условные рефлексы.
- •Вопрос 21. Доминанта
- •Вопрос 22. Роль коры в условнорефлекторной деятельности.
- •Вопрос 23. Роль гиппокампа и гипоталамуса в условнорефлекторной деятельности.
- •Вопрос 24. Роль миндалины и ретикулярной формации в условнорефлекторной деятельности.
- •Вопрос 25. Теория функциональных систем.
- •Вопрос 26. Результат как системообразующий фактор в теории функциональных систем.
- •Вопрос 27. Предпусковая интеграция.
- •Вопрос 28. Опережающее отражение действительности.
- •Вопрос 29. Эволюционные этапы развития внд.
- •Вопрос 30. Различия поведения и высшей нервной деятельности у животных разного эволюционного уровня.
- •Вопрос 31. Этапы пренатального развития функций нервной системы.
- •Вопрос 32. Этапы постнатального развития внд.
- •Вопрос 33,34. Зависимость внд от условий индивидуального развитии. Возможные механизмы зависимость реализации наследственных свойств внд от условий индивидуального развития.
- •Вопрос 35. Рецептивные поля.
- •Вопрос 36. Проекционные поля.
- •Вопрос 37. Классификация сенсорных рецепторов
- •Вопрос 38. Кодирование нервной системой свойств раздражителя
- •Вопрос 39. Детекторы.
- •Вопрос 40. Рецепторный и генераторный потенциалы.
- •Вопрос 41. Рецепторы I (первичные) и II (вторичные) типа.
- •Вопрос 42. Проприорецепция, её роль в регуляции движения и мышечного тонуса.
- •Вопрос 43. Физиология фоторецепции
- •Вопрос 44. Нейронные механизмы зрения
- •Вопрос 45. Корковые и подкорковые зрительные и слуховые центры.
- •Вопрос 46. Функционирование вестибулярной системы. Нистагм.
- •Вопрос 47. Кожная чувствительность.
- •Вопрос 48. Обоняние и вкус.
- •Вопрос 49. Физиологические механизмы слуха.
- •Вопрос 51. Физиологические механизмы Оценки интенсивности звука.
- •Вопрос 52. Интерорецепция. Роль цнс в регуляции функционировании внутренних органов.
- •Вопрос 53. Понятие функционального состояния. Сон и бодрствование.
- •Вопрос 54. Понятие Функционального состояния. Стресс.
- •Вопрос 55. Ритмы ээг, методы регистрации и оценки суммарной биоэлектрической активности.
- •Вопрос 56. Регистрация физиологических показателей для оценки психологических особенностей и состояния человека.
- •Вопрос 57. Последствия межполушарной асимметрии мозга.
- •Вопрос 58. Ээг при различных нейро- и психических патологиях; «Детектор лжи»
Вопрос 44. Нейронные механизмы зрения
Нейроны сетчатки. Фоторецепторы сетчатки синаптически связаны с биполярными нейронами (см. рис. 14.6, Б). При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны биполярного нейрона. От него нервный сигнал передается на ганглиозные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный нейрон, так и от него на ганглиозную клетку происходит безымпульсным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал. С помощью медиатора ацетилхолина.
На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зрительный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецептивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространственное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карликовой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространственное разрешение, но резко уменьшает световую чувствительность.
Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярными клетками (горизонтальные клетки) и между биполярными и ганглиозными клетками (амакриновые клетки). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками.
Кроме афферентных волокон, в зрительном нерве есть и центробежные, или эфферентные, нервные волокна, приносящие к сетчатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчатки, регулируя проведение возбуждения между ними.
Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устрем ляются импульсы. Ганглиозная клетка сетчатки — это первый нейрон «классического» типа в цепи фоторецептор — мозг. Описано три основных типа ганглиозных клеток: отвечающие на включение (on-реакция), на выключение (off-реакция) света и на то и другое (on-off-реакция) (рис. 14.9).
Диаметр рецептивных полей ганглиозных клеток в центре сетчатки значительно меньше, чем на периферии. Эти рецептивные поля имеют круглую форму и концентрически построены: круглый возбудительный центр и кольцевая тормозная периферическая зона или наоборот. При увеличении размера светового пятнышка, вспыхивающего в центре рецептивного поля, ответ ганглиозной клетки увеличивается (пространственная суммация). Одновременное возбуждение близко расположенных ганглиозных клеток приводит к их взаимному торможению: ответы каждой клетки делаются меньше, чем при одиночном раздражении. В основе этого эффекта лежит латеральное, или боковое, торможение. Рецептивные поля соседних ганглиозных клеток частично перекрываются, так что одни и те же рецепторы могут участвовать в генерации ответов нескольких нейронов. Благодаря круглой форме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой мозаикой, состоящей из возбужденных нейронов.