Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен.Физика.Бляяяяяя_хД.doc
Скачиваний:
20
Добавлен:
16.04.2019
Размер:
2.13 Mб
Скачать

Вопрос 114 (Эффект Холла)

А мериканский ученый Э.Холл обнаружил, что в проводнике, помещенном в магнитное поле, возникает разность потенциалов (поперечная) в направлении, перпендикулярном вектору магнитной индукции B и току I, вследствие действия силы Лоренца на заряды, движущиеся в этом проводнике. Эффект Холла— явление возникновения поперечной разности потенциалов при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинках золота.

Опыт показывает, что поперечная разность потенциалов пропорциональна плотности тока j, магнитной индукции и расстоянию d между электродами: U = RdjB . Постоянная Холла Rн = 1/(ne) - пропорциональности между E1 и jB называется коэффициентом (или константой) Холла. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определять их тип для большого числа металлов.

Вопрос 115 (Ускорители заряженных частиц)

Ускорителями заряженных частиц называются устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц (электронов, протонов, мезонов и т. д.).  Любой ускоритель можно охарактеризовать типом ускоряемых частиц, энергией, которая сообщается частицам, разбросом частиц по энергиям и интенсивностью пучка. Ускорители классифицируются на непрерывные (из них вылетает пучок, равномерный по времени) и импульсные (из них частицы выходят порциями - импульсами). Импульсные ускорители характеризуются длительностью импульса. По форме траектории и механизму ускорения частиц ускорители делятся на линейные, циклические и индукционные. В линейных ускорителях траектории движения частиц близки к прямым линиям, в циклических и индукционных - траектории частиц есть окружности или спирали.  Перечислим некоторые типы ускорителей заряженных частиц.  1. Линейный ускоритель. Ускорение частиц осуществляется с помощью электростатического поля, которое создается, например, высоковольтным генератором Ван-де-Граафа. Заряженная частица проходит поле однократно: заряд Q, после прохождения разности потенциалов φ1-φ2, получает энергию W=Q(φ1—φ2). Таким способом частицы ускоряются до ≈10 МэВ. Их дальнейшее ускорение с помощью источников постоянного напряжения невозможно из-за утечки зарядов, пробоев и т. д.  2. Линейный резонансный ускоритель. Ускорение заряженных частиц осуществляется переменным электрическим полем сверхвысокой частоты, которое синхронно изменяется с движением частиц. Таким способом протоны ускоряются до энергий порядка десятков мегаэлектрон-вольт, электроны - до десятков гигаэлектрон-вольт.  4. Фазотрон (синхроциклотрон) — циклический резонансный ускоритель тяжелых заряженных частиц (например, протонов, ионов, α-частиц), в котором управляющее магнитное поле постоянно, при этом частота ускоряющего электрического поля медленно изменяется с периодом. Движение частиц в фазотроне, также как и в циклотроне, осуществляется по раскручивающейся спирали. Частицы в фазотроне ускоряются до энергий, примерно равных 1 ГэВ (данные ограничения задаются размерами фазотрона, так как с ростом скорости частиц растет радиус их круговой траектории).  5. Синхротрон — циклический резонансный ускоритель ультрарелятивистских электронов, в котором управляющее магнитное поле изменяется во времени, а частота ускоряющего электрического поля неизменна. Электроны в синхротроне ускоряются до энергий 5-10 ГэВ.  6. Синхрофазотрон — циклический резонансный ускоритель тяжелых заряженных частиц (протонов, ионов), в котором нужным образом сочетаются свойства фазотрона и синхротрона, т. е. частота ускоряющего электрического поля и управляющее магнитное поле и одновременно изменяются во времени так, чтобы радиус равновесной орбиты частиц оставался постоянным. Протоны ускоряются в синхрофазотроне до энергий 500 ГэВ.  7. Бетатрон — циклический индукционный ускоритель электронов, в котором ускорение создается с помощью вихревого электрического полем, которое индуцируется переменным магнитным полем, удерживающим электроны на круговой орбите. В бетатроне не существует проблемы синхронизации, в отличие от рассмотренных выше ускорителей. Электроны в бетатроне ускоряются до энергий 100 МэВ. При W > 100 МэВ режим ускорения в бетатроне нарушается электромагнитным излучением электронов. Особенно часто используются бетатроны на энергии 20-50 МэВ.