
- •Вопросы к государственному экзамену Дисциплина «Моделирование систем»
- •Понятие модели системы.
- •Определение понятия «моделирование».
- •Использование гипотез и аналогий в исследовании систем.
- •Отличие использования метода моделирования при внешнем и внутреннем проектировании систем
- •Сущность системного подхода к моделированию систем.
- •2 Вариант
- •Процесс функционирования системы.
- •Классификационные признаки видов моделирования систем.
- •Математическое моделирование систем.
- •9. Особенности имитационного моделирования систем.
- •Метод статистического моделирования.
- •11.Критерии эффективности моделирования систем на эвм.
- •Определение математической схемы.
- •13. Экзогенные и эндогенные переменные в модели объекта.
- •14. Закон функционирования системы.
- •15. Понятие алгоритма функционирования.
- •16. Определение статической и динамической моделей объекта.
- •Типовые схемы, используемые при моделировании сложных систем и их элементов.
- •Условия и особенности использования при разработке моделей систем различных типовых схем.
- •Концептуальная модель системы.
- •Группы блоков выделяемые при построении блочной конструкции модели системы.
- •Сущность статистического моделирования систем.
- •Способы генерации последовательностей случайных чисел используемые при моделировании на эвм.
- •Существующие методы проверки качества генераторов случайных чисел.
- •Характерные особенности машинного эксперимента по сравнению с другими видами экспериментов.
- •Виды факторов в имитационном эксперименте с моделями систем.
- •Цель стратегического планирования машинных экспериментов.
- •Цель тактического планирования машинных экспериментов.
- •Точность и достоверность результатов моделирования систем.
- •Сущность фиксации и обработки результатов при статистическом моделировании систем.
- •Место имитационных моделей при машинном синтезе систем.
- •Способы построения моделирующих алгоритмов q –схем.
- •Синхронный и асинхронный моделирующие алгоритмы q –схем.
- •Суть структурного подхода при моделировании систем на базе n –схем.
- •34. Особенности формализации процессов функционирования систем на базе а – схем.
- •Информационная модель системы.
- •Характерные черты эволюционных моделей систем.
- •37.Роль эталонной модели в контуре управления.
- •38.Виды моделей, используемых для принятия решений.
- •39.Суть адаптации применительно к системам управления различными объектами.
- •40.Требования, предъявляемые к модели, реализуемой в реальном масштабе времени.
- •41.Какой процесс, протекающий в системе, называется Марковским?
- •42.Какой процесс называется процессом с дискретным состоянием?
- •43.Какой процесс называется процессом с непрерывным временем?
- •44. Что такое поток событий?
- •45. Что такое интенсивность потока событий?
- •Какой поток событий называется стационарным?
- •47. Какой поток событий называется ординарным?
- •48.Какой поток событий называется простейшим?
- •49.Как ведут себя смо с ограниченной очередью?
- •50.Чем отличаются динамические системы от статических?
- •51.Как выбирается частота дискретизации (теорема Котельникова)?
- •Вопрос 52. Что представляет собой динамический ряд?
- •Типы динамических рядов
- •Вопрос 53. Чем характеризуется динамическая система?
- •Вопрос 54. Что такое порядок динамической системы?
- •Вопрос 55. Что характеризуют параметры динамической системы k и t?
- •56.Передаточная функция звена первого порядка.
- •57.Передаточная функция звена второго порядка.
- •58.Переходная функцией (или переходная характеристикой) динамической системы ?
- •59.Функция Хэвисайда от времени 1[t].
- •60.Уравнение ряда Фурье и коэффициентов а0, Аi, Bi .
- •61.Процесс вычисления коэффициентов а0, Аi, Bi ряда Фурье?
- •Определение коэффициентов по методу Эйлера-Фурье.
- •62.Ряд Фурье для нечетной функции.
- •63.Ряда Фурье для четной функции.
- •64.Как вычисляется составляющие ачх (Si)?
- •65.Как вычисляется составляющие фчх (ϕi)?
- •66.Обратное преобразование Фурье для Si, ϕi.
- •67.Достоинства представления сигнала и динамической системы в виде Фурье представления при моделировании
- •68.К чему свелось моделирование прохождения сигнала через динамический объект в виде Фурье представления?
- •69.Основное уравнение динамики.
- •70.Формулой Эйлера.
- •71.Формулой Эйлера при Δt≠0.
- •72.Как изменяется t (счетчик t) и y при алгоритмической реализации расчет циклом по методу Эйлера?
- •73.Как обозначают порядок зависимости точности от величины шага?
- •74.Каков и по какой причине порядок точности у метода Эйлера?
- •75.В каких случаях численный метод обладает сходимостью?
- •Сходимость означает, что погрешность каждого последующего приближения должна быть меньше погрешности предыдущего приближения, т.Е. Погрешность приближенных значений с каждым шагом должна уменьшаться:
- •В общем случае это неравенство можно представить в виде:
- •76.Какая характеристика сходимости интересует исследователей?
- •77.Что понимается под неустойчивостью метода?
- •78.Что обеспечивает устойчивость метода?
- •79.Что обеспечивает сходимость метода?
- •80. Идея уточненного метода Эйлера.
- •Сущность другого варианта модифицированного метода Эйлера
- •Какова точность метода Рунге-Кутта?
- •Какая функция по методу Рунге-Кутта используется для построения разностной схемы интегрирования?
- •94.Что представляет собой критерий согласия Фишера и каким образом его можно применять?
- •95.Что представляет собой критерий Смирнова и каким образом его можно использовать?
- •96.Что представляет собой критерий согласия Стьюдента и как он используется?
- •97.Объясните смысл понятий: несмещенность оценки, эффективность оценки, состоятельность оценки.
- •98.Каким образом следует вбирать число реализаций опыта?
- •99.Объясните смысл понятия «мощность критерия».
- •100 Каким образом можно выбирать границы для оценки моделируемой случайной величины?
65.Как вычисляется составляющие фчх (ϕi)?
φi = arctg(Bi/Ai) — фаза сигнала, при сложении гармоник нужно учитывать сдвиг фаз
|
||
Рис. 7.5. Сигнал, представленный в частотной области, амплитудно-частотная и фазо-частотная характеристика сигнала (возможный вид) |
66.Обратное преобразование Фурье для Si, ϕi.
весовые коэффициенты составляющих его гармоник: (A0, A1, A2, …, B1, B2, …) полностью характеризуют исходный сигнал, так как по ним сигнал можно полностью восстановить формулой обратного преобразования Фурье:
В случае с системой «S и φ» обратное преобразование Фурье имеет вид:
Значение 2π · i/p = ωi — это частота i-ой гармоники. Отметим также, что частота i-ой гармоники связана с частотой первой гармоники простым соотношением: ωi = i · ω1.
Этот способ моделирования динамических систем основывается на том, что в любом сигнале присутствуют гармонические составляющие. В зависимости от частоты, составляющие называются гармониками (первая, вторая и так далее). Сумма гармоник с соответствующими весами составляет модель сигнала
67.Достоинства представления сигнала и динамической системы в виде Фурье представления при моделировании
Если бы временной сигнал проходил через звено, которое во временной области представлено дифференциальным уравнением, то пришлось бы его интегрировать, что, конечно, приводит к погрешностям результата. В частотной области достаточно перемножить значения коэффициентов ряда Фурье сигнала и звена при одинаковых частотах.
Очевидно, что достоинством метода является замена дифференциальных уравнений модели на алгебраические. Разумеется, данный подход может быть использован только для объектов, у которых известен вид передаточной функции. (Кстати, для неизвестных случаев АЧХ может быть получена численным разложением в ряд.)
68.К чему свелось моделирование прохождения сигнала через динамический объект в виде Фурье представления?
Моделирование прохождения сигнала через объект в этом виде заключается в умножении коэффициента Ai гармоники с частотой ωi входного сигнала X(t) на коэффициент усиления ki при той же гармонике с частотой ωi в АЧХ: Ai* = Ai(ωi) · ki(ωi). (Для коэффициента B преобразование аналогично.) В результате получается коэффициент Ai* выходной гармоники данной частоты ωi. Процедура выполняется для всех частот, представленных во входном сигнале и АЧХ. После получения спектра выходного сигнала можно восстановить сигнал как временную зависимость с помощьюформулы обратного преобразования Фурье.
Заметим главное: моделирование прохождения сигнала через динамический объект свелось к операции умножения двух переменных, точнее, к операции поэлементного умножения вектора одних переменных на вектор других переменных.
69.Основное уравнение динамики.
Модель динамической системы может быть представлена дифференциальным уравнением. Основное уравнение динамики:
y' = f(x(t), y(t), t).