Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по МС v. 1.0 FINAL RELEASE!.doc
Скачиваний:
75
Добавлен:
16.04.2019
Размер:
2.06 Mб
Скачать

58.Переходная функцией (или переходная характеристикой) динамической системы ?

Динамические свойства линейных звеньев и систем автоматического управления в целом могут быть описаны уравнениями и графическими характеристиками. В теории автоматического применяются два типа таких характеристик – временные и частотные. Эти характеристики могут быть сняты экспериментально или построены по уравнению звена

Переходная или временная характеристика (функция) звена представляет собой реакцию на выходе звена, вызванную подачей на его вход единичного, ступенчатого воздействия. Единичное, ступенчатое воздействие (единичная, ступенчатая функция) – это воздействие, которое мгновенно возрастает от нуля до единицы и далее остается неизменным

Таким образом

.

В случае линейной системы переходная функция играет важную роль в анализе её характеристик. В зависимости от приложения, качество системы можно оценивать по переходной функции.

59.Функция Хэвисайда от времени 1[t].

Функция Хевисайда (единичная ступенчатая функцияфункция единичного скачкавключенная единица) — кусочно-постоянная функция, равная нулю для отрицательных значений аргумента и единице — для положительных. В нуле эта функция, вообще говоря, не определена, однако её обычно доопределяют в этой точке некоторым числом, чтобы область определения функции содержала все точки действительной оси. Чаще всего неважно, какое значение функция принимает в нуле, поэтому могут использоваться различные определения функции Хевисайда, удобные по тем или иным соображениям, например[1]

Другое распространённое определение:

Функция Хевисайда широко используется в математическом аппарате теории управления и теории обработки сигналов для представления сигналов, переходящих в определённый момент времени из одного состояния в другое. В математической статистике эта функция применяется, например, для записи эмпирической функции распределения. Названа в честь Оливера Хевисайда.

60.Уравнение ряда Фурье и коэффициентов а0, Аi, Bi .

Пусть функция f(x) - интегрируемая и периодическая с периодом 2 . Коэффициенты Фурье функции f(x) называются числа a0,a1,…an и b0,b1,…bn, которые находятся по формулам:

Рядом Фурье функции f (x) называют ряд вида

(1)

61.Процесс вычисления коэффициентов а0, Аi, Bi ряда Фурье?

Пусть у нас уже есть функция, разложенная в тригонометрический ряд

(4)

В данном разложении функция от угла х, имеющая период разложена по косинусам и синусам углов, кратных х.

Мы пришли к разложению функции в тригонометрический ряд, отправляясь от периодических, колебательных явлений и связанных с ними величин. Подобные разложения часто оказываются полезными и при исследовании функций, заданных в определенном конечном промежутке и вовсе не порожденных никакими колебательными явлениями.

Определение коэффициентов по методу Эйлера-Фурье.

существует ряд функций, которые можно представить в виде бесконечного тригонометрического ряда. Для того, что бы установить возможность разложения некоторой функции , имеющей период в тригонометрический ряд вида:

(4)

нужно иметь набор коэффициентов

Прием для нахождения этих коэффициентов во второй половине XVIII века был применен Эйлером и независимо от него в начале XIX века—Фурье.

Впредь будем предполагать функцию непрерывной или кусочно-непрерывной в промежутке .

Допустим, что разложение (4) имеет место. Проинтегрируем его почленно от до ; в результате получим:

Но, как легко видеть,

(5)

Поэтому все члены под знаком суммы будут равняться нулю, и окончательно получаем

(6)

Для того чтобы найти значение коэффициента , умножим обе части равенства (4) на и снова проинтегрируем почленно в том же промежутке:

В виду (5) .

если , и, наконец,

(9)

Таким образом, обращаются в нуль все интегралы под знаком суммы, кроме интеграла, при котором множителем стоит именно коэффициент . Отсюда получаем:

Аналогично, умножая разложение (4) на и затем, интегрируя почленно, определим коэффициент при синусе:

Формулы, по которым вычисляются коэффициенты , называются формулами Эйлера-Фурье, а сами коэффициенты называются коэффициентами Фурье для данной функции. И, наконец, тригонометрический ряд (4), составленный по этим коэффициентам, получил название ряд Фурье для данной функции.