Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по МС v. 1.0 FINAL RELEASE!.doc
Скачиваний:
75
Добавлен:
16.04.2019
Размер:
2.06 Mб
Скачать

Вопрос 53. Чем характеризуется динамическая система?

Динамическая система представляет собой математическую модель некоторого объекта, процесса или явления.

Динамическая система также может быть представлена как система, обладающая состоянием. При таком подходе, динамическая система описывает (в целом) динамику некоторого процесса, а именно: процесс перехода системы из одного состояния в другое. Фазовое пространство системы — совокупность всех допустимых состояний динамической системы. Таким образом, динамическая система характеризуется своим начальным состоянием и законом, по которому система переходит из начального состояние в другое.

Различают системы с дискретным временем и системы с непрерывным временем.

В системах с дискретным временем, которые традиционно называются каскадами, поведение системы (или, что то же самое, траектория системы в фазовом пространстве) описывается последовательностью состояний. В системах с непрерывным временем, которые традиционно называются потоками, состояние системы определено для каждого момента времени на вещественной или комплексной оси. Каскады и потоки являются основным предметом рассмотрения в символической и топологической динамике.

Динамическая система (как с дискретным, так и с непрерывным временем) является по существу синонимом автономной системы дифференциальных уравнений, заданной в некоторой области и удовлетворяющей там условиям теоремы существования и единственности решения дифференциального уравнения. Положениям равновесия динамической системы соответствуют особые точки дифференциального уравнения, а замкнутые фазовые кривые — его периодическим решениям.

Основное содержание теории динамических систем — это исследование кривых, определяемых дифференциальными уравнениями. Сюда входит разбиение фазового пространства на траектории и исследование предельного поведения этих траекторий: поиск и классификация положений равновесия, выделение притягивающих (аттракторы) и отталкивающих (репелеры) множеств (многообразий). Важнейшие понятие теории динамических систем — это устойчивость (способность системы сколь угодно долго оставаться около положения равновесия или на заданном многообразии) и грубость (сохранение свойств при малых изменениях структуры динамической системы).

Привлечение вероятностно-статистических представлений в эргодической теории динамических систем приводит к понятию динамической системы с инвариантной мерой.

Любая динамическая система характеризуется рядом параметров. Обычно (чаще всего) параметрами называют коэффициенты при производных (первой, второй и т. д.) в записи модели. Чем большая степень старшей производной присутствует в записи модели, тем больший порядок динамической системы, тем глубже ее память, и тем больше коэффициентов (параметров) надо определить, чтобы идентифицировать систему.

Вопрос 54. Что такое порядок динамической системы?

Любая динамическая система характеризуется рядом параметров. Обычно (чаще всего) параметрами называют коэффициенты при производных (первой, второй и т. д.) в записи модели. Чем большая степень старшей производной присутствует в записи модели, тем больший порядок динамической системы, тем глубже ее память, и тем больше коэффициентов (параметров) надо определить, чтобы идентифицировать систему.

Как определить параметры динамической системы? Сначала нужно оценить порядок динамической системы: он совпадает со степенью наибольшей из производных Y по отношению к t. Допустим, что на вход системы, до этого находившейся в нулевых начальных условиях, подали единичный сигнал X(t), как показано на рис. 4.4.

Рис. 4.4. Входной и выходной сигнал, типичный для системы первого порядка

поясним смысл графика. При нулевых начальных условиях, если входной сигнал отсутствует, выходной сигнал равен нулю, и говорят, что система находится в покое. Если подать на вход единичный (пробный) сигнал и удерживать его на входе достаточно долго, то система на выходе попытается подчиниться ему, начнет отклоняться от нулевого состояния. Ожидается, что система на выходе должна дойти до значения kx, то есть увеличить сигнал x в k раз (k — коэффициент усиления входного сигнала). Но, как видно, происходит это не сразу, а с некоторой задержкой, сигнал на выходе нарастает постепенно, инерционно. Насколько инерционно реагирует система, зависит от параметра T. Система достигнет значения kx на выходе и будет держать этот сигнал, пока держится на входе единичный сигнал. Переход от нуля до kx происходит во времени. Переход — процесс динамический, то есть в сигнале присутствует изменение, которое описывается производной, и выход оказывается меньше входа на некоторую величину f