
- •Вопросы к государственному экзамену Дисциплина «Моделирование систем»
- •Понятие модели системы.
- •Определение понятия «моделирование».
- •Использование гипотез и аналогий в исследовании систем.
- •Отличие использования метода моделирования при внешнем и внутреннем проектировании систем
- •Сущность системного подхода к моделированию систем.
- •2 Вариант
- •Процесс функционирования системы.
- •Классификационные признаки видов моделирования систем.
- •Математическое моделирование систем.
- •9. Особенности имитационного моделирования систем.
- •Метод статистического моделирования.
- •11.Критерии эффективности моделирования систем на эвм.
- •Определение математической схемы.
- •13. Экзогенные и эндогенные переменные в модели объекта.
- •14. Закон функционирования системы.
- •15. Понятие алгоритма функционирования.
- •16. Определение статической и динамической моделей объекта.
- •Типовые схемы, используемые при моделировании сложных систем и их элементов.
- •Условия и особенности использования при разработке моделей систем различных типовых схем.
- •Концептуальная модель системы.
- •Группы блоков выделяемые при построении блочной конструкции модели системы.
- •Сущность статистического моделирования систем.
- •Способы генерации последовательностей случайных чисел используемые при моделировании на эвм.
- •Существующие методы проверки качества генераторов случайных чисел.
- •Характерные особенности машинного эксперимента по сравнению с другими видами экспериментов.
- •Виды факторов в имитационном эксперименте с моделями систем.
- •Цель стратегического планирования машинных экспериментов.
- •Цель тактического планирования машинных экспериментов.
- •Точность и достоверность результатов моделирования систем.
- •Сущность фиксации и обработки результатов при статистическом моделировании систем.
- •Место имитационных моделей при машинном синтезе систем.
- •Способы построения моделирующих алгоритмов q –схем.
- •Синхронный и асинхронный моделирующие алгоритмы q –схем.
- •Суть структурного подхода при моделировании систем на базе n –схем.
- •34. Особенности формализации процессов функционирования систем на базе а – схем.
- •Информационная модель системы.
- •Характерные черты эволюционных моделей систем.
- •37.Роль эталонной модели в контуре управления.
- •38.Виды моделей, используемых для принятия решений.
- •39.Суть адаптации применительно к системам управления различными объектами.
- •40.Требования, предъявляемые к модели, реализуемой в реальном масштабе времени.
- •41.Какой процесс, протекающий в системе, называется Марковским?
- •42.Какой процесс называется процессом с дискретным состоянием?
- •43.Какой процесс называется процессом с непрерывным временем?
- •44. Что такое поток событий?
- •45. Что такое интенсивность потока событий?
- •Какой поток событий называется стационарным?
- •47. Какой поток событий называется ординарным?
- •48.Какой поток событий называется простейшим?
- •49.Как ведут себя смо с ограниченной очередью?
- •50.Чем отличаются динамические системы от статических?
- •51.Как выбирается частота дискретизации (теорема Котельникова)?
- •Вопрос 52. Что представляет собой динамический ряд?
- •Типы динамических рядов
- •Вопрос 53. Чем характеризуется динамическая система?
- •Вопрос 54. Что такое порядок динамической системы?
- •Вопрос 55. Что характеризуют параметры динамической системы k и t?
- •56.Передаточная функция звена первого порядка.
- •57.Передаточная функция звена второго порядка.
- •58.Переходная функцией (или переходная характеристикой) динамической системы ?
- •59.Функция Хэвисайда от времени 1[t].
- •60.Уравнение ряда Фурье и коэффициентов а0, Аi, Bi .
- •61.Процесс вычисления коэффициентов а0, Аi, Bi ряда Фурье?
- •Определение коэффициентов по методу Эйлера-Фурье.
- •62.Ряд Фурье для нечетной функции.
- •63.Ряда Фурье для четной функции.
- •64.Как вычисляется составляющие ачх (Si)?
- •65.Как вычисляется составляющие фчх (ϕi)?
- •66.Обратное преобразование Фурье для Si, ϕi.
- •67.Достоинства представления сигнала и динамической системы в виде Фурье представления при моделировании
- •68.К чему свелось моделирование прохождения сигнала через динамический объект в виде Фурье представления?
- •69.Основное уравнение динамики.
- •70.Формулой Эйлера.
- •71.Формулой Эйлера при Δt≠0.
- •72.Как изменяется t (счетчик t) и y при алгоритмической реализации расчет циклом по методу Эйлера?
- •73.Как обозначают порядок зависимости точности от величины шага?
- •74.Каков и по какой причине порядок точности у метода Эйлера?
- •75.В каких случаях численный метод обладает сходимостью?
- •Сходимость означает, что погрешность каждого последующего приближения должна быть меньше погрешности предыдущего приближения, т.Е. Погрешность приближенных значений с каждым шагом должна уменьшаться:
- •В общем случае это неравенство можно представить в виде:
- •76.Какая характеристика сходимости интересует исследователей?
- •77.Что понимается под неустойчивостью метода?
- •78.Что обеспечивает устойчивость метода?
- •79.Что обеспечивает сходимость метода?
- •80. Идея уточненного метода Эйлера.
- •Сущность другого варианта модифицированного метода Эйлера
- •Какова точность метода Рунге-Кутта?
- •Какая функция по методу Рунге-Кутта используется для построения разностной схемы интегрирования?
- •94.Что представляет собой критерий согласия Фишера и каким образом его можно применять?
- •95.Что представляет собой критерий Смирнова и каким образом его можно использовать?
- •96.Что представляет собой критерий согласия Стьюдента и как он используется?
- •97.Объясните смысл понятий: несмещенность оценки, эффективность оценки, состоятельность оценки.
- •98.Каким образом следует вбирать число реализаций опыта?
- •99.Объясните смысл понятия «мощность критерия».
- •100 Каким образом можно выбирать границы для оценки моделируемой случайной величины?
34. Особенности формализации процессов функционирования систем на базе а – схем.
А-схемы представляются в
виде кусочно-линейных агрегатов (КЛА)
и позволяют описать достаточно широкий
класс процессов дающих возможность
построения на их основе не только
имитационных, но и аналитических моделей.
А-схемы рассматривается как объект,
который в каждый момент времени
характеризуется внутренними состояниями
;
в изолированные моменты времени на вход
агрегата А могут поступать входные
сигналы
,а
с его выхода могут сниматься выходные
сигналы
.
Класс КЛА выделяется с помощью
конкретизации структуры множеств Z,
X,
Y,
т. е. пространств состояний, входных н
выходных сигналов соответственно, а
также операторов переходов V,
U, W
и выходов G.
если мы хотим описать процесс функционирования прибора обслуживания как КЛА, то основное состояние будет соответствовать числу заявок в приборе (П) [в накопителе (Н) и канале (К)], а вектор дополнительных координат будет содержать информацию о длительности пребывания заявки, ее приоритетности и др., т. е. ту информацию, значение которой необходимо для описания процесса z(t).
Основные преимущества агрегативного подхода состоят в том, что в руки разработчиков моделей и пользователей дается одна и та же формальная схема, т. е. А-схема. Это позволяет использовать результаты математических исследований процессов, описывающих функционирование агрегативных систем, при создании моделирующих алгоритмов и их программной реализации на ЭВМ. В настоящее время имеются разработки математического обеспечения, в основу которого положен агрегативный подход. Но при этом у пользователя всегда должна оставаться свобода в переходе от концептуальной к формальной модели. Таким образом, имеется возможность многовариантного представления процесса функционирования некоторой системы S в виде модели М, построенной на основе А-схем.
В основу моделирующего алгоритма А-схемы положен принцип просмотра состояний модели в моменты скачков, т. е. «принцип δz» («принцип особых состояний»). Работа такого блока сводится к выбору типа агрегата (АЕ, Ак, Ан, Лр и Ас), для которого реализуется дальнейшее «продвижение» при моделировании.
В схеме моделирующего алгоритма, имитирующего воздействие на систему S внешней среды Е, определяется, какое событие имело место, поступление или выдача сигнала из внешней среды, т. е. заявки входного потока в А-схему. При наступлении времени выдачи заявки она выдается в А-схему и генерируется интервал времени между моментом поступления новой заявки, при этом учитываются схемы моделирующих алгоритмов, имитирующих работу всех агрегатов. Работа этих схем полностью соответствует описанию процесса функционирования агрегатов. А также учитывается работа схем агрегатов выполняющих вспомогательные функции сопряжения всех агрегатов. Они реализуют взаимодействие основных агрегатов, разрешая или запрещая передачу сигналов между ними в зависимости от ситуации с учетом правил обмена сигналами в А-схеме. При этом в схемах предусмотрено тестирование ошибок, связанных с нарушением при задании исходных данных этих правил обмена сигналами в А-схеме.