
- •Вопросы к государственному экзамену Дисциплина «Моделирование систем»
- •Понятие модели системы.
- •Определение понятия «моделирование».
- •Использование гипотез и аналогий в исследовании систем.
- •Отличие использования метода моделирования при внешнем и внутреннем проектировании систем
- •Сущность системного подхода к моделированию систем.
- •2 Вариант
- •Процесс функционирования системы.
- •Классификационные признаки видов моделирования систем.
- •Математическое моделирование систем.
- •9. Особенности имитационного моделирования систем.
- •Метод статистического моделирования.
- •11.Критерии эффективности моделирования систем на эвм.
- •Определение математической схемы.
- •13. Экзогенные и эндогенные переменные в модели объекта.
- •14. Закон функционирования системы.
- •15. Понятие алгоритма функционирования.
- •16. Определение статической и динамической моделей объекта.
- •Типовые схемы, используемые при моделировании сложных систем и их элементов.
- •Условия и особенности использования при разработке моделей систем различных типовых схем.
- •Концептуальная модель системы.
- •Группы блоков выделяемые при построении блочной конструкции модели системы.
- •Сущность статистического моделирования систем.
- •Способы генерации последовательностей случайных чисел используемые при моделировании на эвм.
- •Существующие методы проверки качества генераторов случайных чисел.
- •Характерные особенности машинного эксперимента по сравнению с другими видами экспериментов.
- •Виды факторов в имитационном эксперименте с моделями систем.
- •Цель стратегического планирования машинных экспериментов.
- •Цель тактического планирования машинных экспериментов.
- •Точность и достоверность результатов моделирования систем.
- •Сущность фиксации и обработки результатов при статистическом моделировании систем.
- •Место имитационных моделей при машинном синтезе систем.
- •Способы построения моделирующих алгоритмов q –схем.
- •Синхронный и асинхронный моделирующие алгоритмы q –схем.
- •Суть структурного подхода при моделировании систем на базе n –схем.
- •34. Особенности формализации процессов функционирования систем на базе а – схем.
- •Информационная модель системы.
- •Характерные черты эволюционных моделей систем.
- •37.Роль эталонной модели в контуре управления.
- •38.Виды моделей, используемых для принятия решений.
- •39.Суть адаптации применительно к системам управления различными объектами.
- •40.Требования, предъявляемые к модели, реализуемой в реальном масштабе времени.
- •41.Какой процесс, протекающий в системе, называется Марковским?
- •42.Какой процесс называется процессом с дискретным состоянием?
- •43.Какой процесс называется процессом с непрерывным временем?
- •44. Что такое поток событий?
- •45. Что такое интенсивность потока событий?
- •Какой поток событий называется стационарным?
- •47. Какой поток событий называется ординарным?
- •48.Какой поток событий называется простейшим?
- •49.Как ведут себя смо с ограниченной очередью?
- •50.Чем отличаются динамические системы от статических?
- •51.Как выбирается частота дискретизации (теорема Котельникова)?
- •Вопрос 52. Что представляет собой динамический ряд?
- •Типы динамических рядов
- •Вопрос 53. Чем характеризуется динамическая система?
- •Вопрос 54. Что такое порядок динамической системы?
- •Вопрос 55. Что характеризуют параметры динамической системы k и t?
- •56.Передаточная функция звена первого порядка.
- •57.Передаточная функция звена второго порядка.
- •58.Переходная функцией (или переходная характеристикой) динамической системы ?
- •59.Функция Хэвисайда от времени 1[t].
- •60.Уравнение ряда Фурье и коэффициентов а0, Аi, Bi .
- •61.Процесс вычисления коэффициентов а0, Аi, Bi ряда Фурье?
- •Определение коэффициентов по методу Эйлера-Фурье.
- •62.Ряд Фурье для нечетной функции.
- •63.Ряда Фурье для четной функции.
- •64.Как вычисляется составляющие ачх (Si)?
- •65.Как вычисляется составляющие фчх (ϕi)?
- •66.Обратное преобразование Фурье для Si, ϕi.
- •67.Достоинства представления сигнала и динамической системы в виде Фурье представления при моделировании
- •68.К чему свелось моделирование прохождения сигнала через динамический объект в виде Фурье представления?
- •69.Основное уравнение динамики.
- •70.Формулой Эйлера.
- •71.Формулой Эйлера при Δt≠0.
- •72.Как изменяется t (счетчик t) и y при алгоритмической реализации расчет циклом по методу Эйлера?
- •73.Как обозначают порядок зависимости точности от величины шага?
- •74.Каков и по какой причине порядок точности у метода Эйлера?
- •75.В каких случаях численный метод обладает сходимостью?
- •Сходимость означает, что погрешность каждого последующего приближения должна быть меньше погрешности предыдущего приближения, т.Е. Погрешность приближенных значений с каждым шагом должна уменьшаться:
- •В общем случае это неравенство можно представить в виде:
- •76.Какая характеристика сходимости интересует исследователей?
- •77.Что понимается под неустойчивостью метода?
- •78.Что обеспечивает устойчивость метода?
- •79.Что обеспечивает сходимость метода?
- •80. Идея уточненного метода Эйлера.
- •Сущность другого варианта модифицированного метода Эйлера
- •Какова точность метода Рунге-Кутта?
- •Какая функция по методу Рунге-Кутта используется для построения разностной схемы интегрирования?
- •94.Что представляет собой критерий согласия Фишера и каким образом его можно применять?
- •95.Что представляет собой критерий Смирнова и каким образом его можно использовать?
- •96.Что представляет собой критерий согласия Стьюдента и как он используется?
- •97.Объясните смысл понятий: несмещенность оценки, эффективность оценки, состоятельность оценки.
- •98.Каким образом следует вбирать число реализаций опыта?
- •99.Объясните смысл понятия «мощность критерия».
- •100 Каким образом можно выбирать границы для оценки моделируемой случайной величины?
Способы построения моделирующих алгоритмов q –схем.
Существует два основных принципа построения моделирующих алгоритмов:
«принцип Δt» и «принцип δz».
При построении моделирующего алгоритма Q-схемы по «принципу Δt », т. е. алгоритма с детерминированным шагом, необходимо для построения адекватной модели Мм определить минимальный интервал времени между соседними событиями A'=min{u,} (во входящих потоках и потоках обслуживании) и принять, что шаг моделирования равен At'.
В моделирующих алгоритмах, построенных по «принципу δz», т. е. в алгоритмах со случайным шагом, элементы Q-схемы просматриваются при моделировании только в моменты особых состояний (в моменты появления заявок из И или изменения состояний К).При этом длительность шага Δt =var зависит как от особенностей самой системы S, так и от воздействий внешней среды Е.
Синхронный и асинхронный моделирующие алгоритмы q –схем.
Моделирующие алгоритмы со случайным шагом могут быть реализованы синхронным и асинхронным способами.
При синхронном способе один из элементов Q-схемы (И, Н или К И — источники; Н — накопители; К — каналы обслуживания заявок.) выбирается в качестве ведущего и по нему «синхронизируется» весь процесс моделирования.
При асинхронном способе построения моделирующего алгоритма ведущий (синхронизирующий) элемент не используется, а очередному шагу моделирования (просмотру элементов Q-схемы) может соответствовать любое особое состояние всего множества элементов И, Н и К. При этом просмотр элементов Q-схемы организован так, что при каждом особом состоянии либо циклически просматриваются все элементы, либо спорадически — только те, которые могут в этом случае изменить свое состояние (просмотр с прогнозированием) [4, 36, 37].
Суть структурного подхода при моделировании систем на базе n –схем.
Применение аппарата N-схем позволяет осуществить структурный подход к построению имитационной модели системы S, при котором обеспечиваются наглядность модели, модульный принцип ее разработки (сборки), возможность перехода к автоматизированной интерактивной процедуре проектирования.
построение N-схемы происходит формально: состояниям системы соответствуют позиции N-схемы, событиям — переходы. Нанесем маркировку, соответствующую такому состоянию системы, при котором каналы свободны, операторы не заняты, в системе нет заказов (рис. 1.).
рис. 1.
видно, что для выполнения каждого события (перехода) необходимо выполнение определенных условий. Эти условия в N-схемах (сетях Петри) называются предусловиями. Выполнение события может вызвать нарушение предусловий и привести к выполнению условий для совершения других событий — постусловий.
Процесс моделирования заключается в последовательном вычислении маркировок, получающихся в результате выполнения событий (переходов). События, по которым нет предусловий, являются входами N-схемы. Каждый вход должен быть присоединен к модели, генерирующей запуск события в соответствии с условиями, определяемыми моделируемой реальностью. В частности, это может быть другая N-схема, моделирующая процесс появления этих событий.
В N-схемах два или несколько разрушенных невзаимодействующих событий могут происходить независимо друг от друга, т. е. N-схемам и их моделям свойствен параллелизм, или одновременность. Синхронизировать события, пока этого не требует моделируемая система, нет нужды. Таким образом, N-схемы удобны для моделирования системы с распределенным управлением, в которых несколько процессов выполняются одновременно.
Другая важная особенность N-схем — это их асинхронная природа. Внутри N-схемы отсутствует измерение времени. Для простоты обычно вводят следующее ограничение. Запуск перехода (и соответствующего события) рассматривается как мгновенное событие, занимающее нулевое время, а возникновение двух событий одновременно невозможно. Моделируемое таким образом событие называется примитивным (примитивные события мгновенны и неодновременны).
Непримитивными называются такие события, длительность которых отлична от нуля. Любое непримитивное событие может быть представлено в виде двух примитивных событий: «начало непримитивного события», «конец непримитивного события» — и состояния (условия) «непримитивное событие происходит».