
- •Вопросы к государственному экзамену Дисциплина «Моделирование систем»
- •Понятие модели системы.
- •Определение понятия «моделирование».
- •Использование гипотез и аналогий в исследовании систем.
- •Отличие использования метода моделирования при внешнем и внутреннем проектировании систем
- •Сущность системного подхода к моделированию систем.
- •2 Вариант
- •Процесс функционирования системы.
- •Классификационные признаки видов моделирования систем.
- •Математическое моделирование систем.
- •9. Особенности имитационного моделирования систем.
- •Метод статистического моделирования.
- •11.Критерии эффективности моделирования систем на эвм.
- •Определение математической схемы.
- •13. Экзогенные и эндогенные переменные в модели объекта.
- •14. Закон функционирования системы.
- •15. Понятие алгоритма функционирования.
- •16. Определение статической и динамической моделей объекта.
- •Типовые схемы, используемые при моделировании сложных систем и их элементов.
- •Условия и особенности использования при разработке моделей систем различных типовых схем.
- •Концептуальная модель системы.
- •Группы блоков выделяемые при построении блочной конструкции модели системы.
- •Сущность статистического моделирования систем.
- •Способы генерации последовательностей случайных чисел используемые при моделировании на эвм.
- •Существующие методы проверки качества генераторов случайных чисел.
- •Характерные особенности машинного эксперимента по сравнению с другими видами экспериментов.
- •Виды факторов в имитационном эксперименте с моделями систем.
- •Цель стратегического планирования машинных экспериментов.
- •Цель тактического планирования машинных экспериментов.
- •Точность и достоверность результатов моделирования систем.
- •Сущность фиксации и обработки результатов при статистическом моделировании систем.
- •Место имитационных моделей при машинном синтезе систем.
- •Способы построения моделирующих алгоритмов q –схем.
- •Синхронный и асинхронный моделирующие алгоритмы q –схем.
- •Суть структурного подхода при моделировании систем на базе n –схем.
- •34. Особенности формализации процессов функционирования систем на базе а – схем.
- •Информационная модель системы.
- •Характерные черты эволюционных моделей систем.
- •37.Роль эталонной модели в контуре управления.
- •38.Виды моделей, используемых для принятия решений.
- •39.Суть адаптации применительно к системам управления различными объектами.
- •40.Требования, предъявляемые к модели, реализуемой в реальном масштабе времени.
- •41.Какой процесс, протекающий в системе, называется Марковским?
- •42.Какой процесс называется процессом с дискретным состоянием?
- •43.Какой процесс называется процессом с непрерывным временем?
- •44. Что такое поток событий?
- •45. Что такое интенсивность потока событий?
- •Какой поток событий называется стационарным?
- •47. Какой поток событий называется ординарным?
- •48.Какой поток событий называется простейшим?
- •49.Как ведут себя смо с ограниченной очередью?
- •50.Чем отличаются динамические системы от статических?
- •51.Как выбирается частота дискретизации (теорема Котельникова)?
- •Вопрос 52. Что представляет собой динамический ряд?
- •Типы динамических рядов
- •Вопрос 53. Чем характеризуется динамическая система?
- •Вопрос 54. Что такое порядок динамической системы?
- •Вопрос 55. Что характеризуют параметры динамической системы k и t?
- •56.Передаточная функция звена первого порядка.
- •57.Передаточная функция звена второго порядка.
- •58.Переходная функцией (или переходная характеристикой) динамической системы ?
- •59.Функция Хэвисайда от времени 1[t].
- •60.Уравнение ряда Фурье и коэффициентов а0, Аi, Bi .
- •61.Процесс вычисления коэффициентов а0, Аi, Bi ряда Фурье?
- •Определение коэффициентов по методу Эйлера-Фурье.
- •62.Ряд Фурье для нечетной функции.
- •63.Ряда Фурье для четной функции.
- •64.Как вычисляется составляющие ачх (Si)?
- •65.Как вычисляется составляющие фчх (ϕi)?
- •66.Обратное преобразование Фурье для Si, ϕi.
- •67.Достоинства представления сигнала и динамической системы в виде Фурье представления при моделировании
- •68.К чему свелось моделирование прохождения сигнала через динамический объект в виде Фурье представления?
- •69.Основное уравнение динамики.
- •70.Формулой Эйлера.
- •71.Формулой Эйлера при Δt≠0.
- •72.Как изменяется t (счетчик t) и y при алгоритмической реализации расчет циклом по методу Эйлера?
- •73.Как обозначают порядок зависимости точности от величины шага?
- •74.Каков и по какой причине порядок точности у метода Эйлера?
- •75.В каких случаях численный метод обладает сходимостью?
- •Сходимость означает, что погрешность каждого последующего приближения должна быть меньше погрешности предыдущего приближения, т.Е. Погрешность приближенных значений с каждым шагом должна уменьшаться:
- •В общем случае это неравенство можно представить в виде:
- •76.Какая характеристика сходимости интересует исследователей?
- •77.Что понимается под неустойчивостью метода?
- •78.Что обеспечивает устойчивость метода?
- •79.Что обеспечивает сходимость метода?
- •80. Идея уточненного метода Эйлера.
- •Сущность другого варианта модифицированного метода Эйлера
- •Какова точность метода Рунге-Кутта?
- •Какая функция по методу Рунге-Кутта используется для построения разностной схемы интегрирования?
- •94.Что представляет собой критерий согласия Фишера и каким образом его можно применять?
- •95.Что представляет собой критерий Смирнова и каким образом его можно использовать?
- •96.Что представляет собой критерий согласия Стьюдента и как он используется?
- •97.Объясните смысл понятий: несмещенность оценки, эффективность оценки, состоятельность оценки.
- •98.Каким образом следует вбирать число реализаций опыта?
- •99.Объясните смысл понятия «мощность критерия».
- •100 Каким образом можно выбирать границы для оценки моделируемой случайной величины?
Вопросы к государственному экзамену Дисциплина «Моделирование систем»
Понятие модели системы.
Модель – это физический или абстрактный образ моделируемого объекта, удобный для проведения исследований и позволяющий адекватно отображать интересующие исследователя физические свойства и характеристики объекта.
логические схемы, упрощающие рассуждения и логические построения или позволяющие проводить эксперименты, уточняющие природу явлений, называются моделями.
модель (лат. modulus — мера) — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала
К характеристикам модели системы относится:
цели функционирования;
сложность системы;
целостность системы;
неопределенность, которая проявляется в системе;
поведение системы;
адаптивность системы;
организационная структура модели;
управление модели;
возможность развития модели.
Определение понятия «моделирование».
Моделирование (в широком смысле) является основным методом исследований
во всех областях знаний и научно обоснованным методом оценок
характеристик сложных систем, используемым для принятия решений в различных
сферах инженерной деятельности. Существующие и проектируемые
системы можно эффективно исследовать с помощью математических моделей
(аналитических и имитационных), реализуемых на современных ЭВМ, которые
в этом случае выступают в качестве инструмента экспериментатора с моделью
системы.
Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием. Таким образом, моделирование может быть определено как представление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью. Теория замещения одних объектов (оригиналов) другими объектами (моделями) и исследования свойств объектов на их моделях называется теорией моделирования.
Определяя гносеологическую роль теории моделирования, т. е. ее значение в процессе познания, необходимо, прежде всего, отвлечься от имеющегося в науке и технике многообразия моделей и выделить то общее, что присуще моделям различных по своей природе объектов реального мира. Это общее заключается в наличии некоторой структуры (статической или динамической, материальной или мысленной), которая подобна структуре данного объекта. В процессе изучения модель выступает в роли относительного самостоятельного квазиобъекта, позволяющего получить при исследовании некоторые знания о самом объекте.
Если результаты моделирования подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах, то говорят, что модель адекватна объекту. При этом адекватность модели зависит от цели моделирования и принятых критериев.
Обобщенно моделирование можно определить как метод опосредованного познания, при котором изучаемый объект-оригинал находится в некотором соответствии с другим объектом-моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса. Стадии познания, на которых происходит такая замена, а также формы соответствия модели и оригинала могут быть различными:
1) моделирование как познавательный процесс, содержащий переработку информации, поступающей из внешней среды, о происходящих в ней явлениях, в результате чего в сознании появляются образы, соответствующие объектам;
2) моделирование, заключающееся в построении некоторой системы-модели (второй системы), связанной определенными соотношениями подобия с системой-оригиналом (первой системой), причем в этом случае отображение одной системы в другую является средством выявления зависимостей между двумя системами, отраженными в соотношениях подобия, а не результатом непосредственного изучения поступающей информации.
Следует отметить, что с точки зрения философии моделирование — эффективное средство познания природы. Процесс моделирования предполагает наличие объекта исследования; исследователя, перед которым поставлена конкретная задача; модели, создаваемой для получения информации об объекте и необходимой для решения поставленной задачи. Причем по отношению к модели исследователь является, по сути дела, экспериментатором, только в данном случае эксперимент проводится не с реальным объектом, а с его моделью. Такой эксперимент для инженера есть инструмент непосредственного решения организационно-технических задач.
Надо иметь в виду, что любой эксперимент может иметь существенное значение в конкретной области науки только при специальной его обработке и обобщении. Единичный эксперимент никогда не может быть решающим для подтверждения гипотезы, проверки теории. Поэтому инженеры (исследователи и практики) должны быть знакомы с элементами современной методологии теории познания и, в частности, не должны забывать основного положения материалистической философии, что именно экспериментальное исследование, опыт, практика являются критерием истины.