
- •1.Гомогенные и гетерогенные системы. Фаза, компонент. Факторы, влияющие на скорость хим реакции.
- •19.1. Фазы
- •Факторы, влияющие на скорость химической реакции
- •4.Зависимость скорости реакции от температуры. Уравнение Вант-Гоффа.
- •6. Обратмые и необратимые процессы. Кинетика обратимого процесса. Привести примеры.
- •Реагенты (исходные вещества) переходное состояние продукты реакции
- •7. 8. 9. Состояние хим равновесия. Константа равновесия. Привести примеры. Какие факторы влияют на константу равновесия?
- •10. Энергетические эффекты хим реакции. Первый закон термодинамики.
- •11.Внутренняя энергия. Факторы, влияющие на внутреннюю энергию.
- •12. Энтальпия. Стандартные условия при определении энтальпии. Каким образом рассчитывается энтальпия в ходе хим реакции.
- •13. Закон Гесса. Привести пример определения энтальпии хим реакции.
- •14. Понятие об энтропии. Как связано изменение энтропии с изменением объема системы.
- •Термодинамическое определение энтропии
- •Статистическое определение энтропии: принцип Больцмана
- •Понимание энтропии как меры беспорядка
- •Границы применимости понимания энтропии как меры беспорядка
- •Энтропия в открытых системах
- •Измерение энтропии
- •Построение графика изменения энтропии
- •15. Движущая сила хим реакции. Энергия Гиббса. Определение температуры равновесия.
- •3) Тепловое Равновесие. Температура
- •Определение
- •Связь с термодинамической устойчивостью системы
- •Применение в химииСвязь с химическим потенциалом
- •16. Способы выражения концентрации раствора.
- •17. Понятие об эквиваленте. Закон эквивалентов. Нормальная концентрация. Основное уравнение объемного анализа. Определение эквивалента элемента оксида, соли, кислоты и основания.
- •18. Теория электролитической диссоциации.
- •19. Кислоты, соли, основания. Процессы диссоциации. Основные св-ва.
- •20. Степень диссоциации. Сильные и слабые электролиты.
- •Методы определения
- •Мнимая степень диссоциации
- •21. Ионное произведение воды. Водородный показатель.
- •История
- •Уравнения, связывающие pH и pOh [Вывод значения pH
- •22. Гидролиз солей. Факторы, влияющие на процессы гидролиза солей.
- •2) Факторы, влияющие на степень гидролиза.
- •23. Растворимость. Насыщенные и пересыщенные растворы.
- •Насыщенные и пересыщенные растворы
- •Растворимость веществ
- •Растворимые и нерастворимые вещества
- •Разбавленные и концентрированные растворы
- •24. Произведение растворимости.
- •25.Давление насыщенного пара. Закон Рауля. Определение температуры кипения и кристаллизации раствора. Эбуллиоскопические и криоскопические константы.
- •Первый закон Рауля
- •Второй закон Рауля
- •Понижение температуры кристаллизации растворов
- •Повышение температуры кипения растворов
- •Криоскопическая и эбулиоскопическая константы
- •Растворы электролитов
- •26.Отклонение от законов Рауля для растворов электролитов. Изотонический коэффициент. Отклонения от закона Рауля
- •27. Временная и постоянная жесткость воды. Единицы измерения жесткости. Устранение временной и постоянной жесткости воды. Иониты.
- •2) Единицы измерения
- •3) Методы устранения
- •Органические иониты
- •Неорганические иониты
- •Описание
- •Окисление
- •Восстановление
- •Виды окислительно-восстановительных реакций
- •Примеры Окислительно-восстановительная реакция между водородом и фтором
- •Окисление, восстановление
- •Мнемонические правила
- •29. Типы окислительно-восстановительных реакций. Привести примеры.
- •30. Механизм возникновения электродного потенциала.
- •31. Гальванические элементы. Принцип работы. Эдс элемента.
- •Эксплуатация элементов и батарей
- •32. Гальванический элемент Якоби и Вольта.
- •33. Стандартный (водородный) электрод. Определение стандартного (нормального) электродного потенциала металла.
- •Устройство
- •34. Ряд напряжений металлов и выводы из него.
- •35. Концентрационные гальванические элементы. Уравнение Нернста.
- •Вывод уравнения Нернста
- •36. Электродные процессы на электродах при электролизе. Электролиз раствора соли.
- •Электролиз расплавов солей
- •Электролиз водных растворов электролитов
- •Катодные процессы.
- •Анодные процессы.
- •37. Электролиз водного раствора соли: а) с инертными электродами б) с растворимым анодом.
- •38. Закон Фарадея. Применение процессов электролиза.
- •Первый закон Фарадея
- •Вывод закона Фарадея
- •Второй закон Фарадея
- •39. Виды коррозионных разрушений.
- •40. Классификация коррозионных процессов. Химическая и электрохимическая коррозия.
- •1.1. По виду (геометрическому характеру) коррозионных разрушений на поверхности или в объёме металла.
- •1.2. По механизму реакций взаимодействия металла со средой (химическая и электрохимическая коррозия).
- •1.3. По типу коррозионной среды
- •1.4.По характеру дополнительных воздействии
- •2)Х имическая коррозия
- •Электрохимическая коррозия
- •41. Причины возникновения электрохимической коррозии. Привести примеры.
- •42. Методы защиты металлов от коррозии.
- •43. Методы защиты металлов от коррозии. Анодные и катодные покрытия на металле.
- •44. Электрохимические методы защиты металлов от коррозии.
- •45. Современная формулировка и физический смысл периодического закона д. И. Менделеева.
- •46. Атомная модель. Квантовые числа. Принцип Паули.
- •Модели атомов
- •Строение атомов и принцип Паули
- •47. Электронные формулы. Правило Хунда. Свойства р-элементов.
- •48. Свойства s- и p-элементов. Привести примеры.
- •Опасность и хранение
- •49. Свойства d- и f-элементов. Привести примеры.
- •50. Энергия ионизации. Сродство к электрону. Электроотрицательность.
Уравнения, связывающие pH и pOh [Вывод значения pH
В чистой воде при 25 °C концентрации ионов водорода ([H+]) и гидроксид-ионов ([OH−]) одинаковы и составляют 10−7 моль/л, это напрямую следует из определения ионного произведения воды, которое равно [H+] · [OH−] и составляет 10−14 моль²/л² (при 25 °C).
Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания — наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H+] > [OH−] говорят, что раствор является кислым, а при [OH−] > [H+] — щелочным.
Для удобства представления, чтобы избавиться от отрицательного показателя степени, вместо концентраций ионов водорода пользуются их десятичным логарифмом, взятым с обратным знаком, который собственно и является водородным показателем — pH.
pOH
Несколько меньшее распространение получила обратная pH величина — показатель основности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH−:
как в любом водном растворе при 25 °C [H + ][OH − ] = 1,0×10 − 14, очевидно, что при этой температуре:
22. Гидролиз солей. Факторы, влияющие на процессы гидролиза солей.
1) Гидро́лиз (от др.-греч. ὕδωρ — вода и λύσις — разложение) — один из видов химических реакций сольволиза, где при взаимодействии веществ с водой происходит разложение исходной молекулы с образованием новых соединений. Гидролизу подвергаются соединения различных классов: соли, углеводы, белки, сложные эфиры, жиры и др.
Гидролиз солей
Взаимодействие ионов соли с водой, приводящее к образованию молекул слабого электролита, называют гидролизом солей.
Различают несколько вариантов гидролиза солей:
1. Гидролиз соли слабой кислоты и сильного основания:
Na2CO3 + Н2О = NaHCO3 + NaOH
CO32− + H2O = HCO3− + OH−
(раствор имеет щелочную реакцию, реакция протекает обратимо)
2. Гидролиз соли сильной кислоты и слабого основания:
CuCl2 + Н2О = CuOHCl + HCl
Cu2+ + Н2О = CuOH+ + Н+
(раствор имеет кислую реакцию, реакция протекает обратимо)
3. Гидролиз соли слабой кислоты и слабого основания:
Al2S3 + 6H2O = 2Al(OH)3 + 3H2S
2Al3+ + 3S2− + 6Н2О = 2Al(OH)3(осадок) + ЗН2S(газ)
(Гидролиз в этом случае протекает практически полностью, так как оба продукта гидролиза уходят из сферы реакции в виде осадка или газа).
Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален