
- •1.Гомогенные и гетерогенные системы. Фаза, компонент. Факторы, влияющие на скорость хим реакции.
- •19.1. Фазы
- •Факторы, влияющие на скорость химической реакции
- •4.Зависимость скорости реакции от температуры. Уравнение Вант-Гоффа.
- •6. Обратмые и необратимые процессы. Кинетика обратимого процесса. Привести примеры.
- •Реагенты (исходные вещества) переходное состояние продукты реакции
- •7. 8. 9. Состояние хим равновесия. Константа равновесия. Привести примеры. Какие факторы влияют на константу равновесия?
- •10. Энергетические эффекты хим реакции. Первый закон термодинамики.
- •11.Внутренняя энергия. Факторы, влияющие на внутреннюю энергию.
- •12. Энтальпия. Стандартные условия при определении энтальпии. Каким образом рассчитывается энтальпия в ходе хим реакции.
- •13. Закон Гесса. Привести пример определения энтальпии хим реакции.
- •14. Понятие об энтропии. Как связано изменение энтропии с изменением объема системы.
- •Термодинамическое определение энтропии
- •Статистическое определение энтропии: принцип Больцмана
- •Понимание энтропии как меры беспорядка
- •Границы применимости понимания энтропии как меры беспорядка
- •Энтропия в открытых системах
- •Измерение энтропии
- •Построение графика изменения энтропии
- •15. Движущая сила хим реакции. Энергия Гиббса. Определение температуры равновесия.
- •3) Тепловое Равновесие. Температура
- •Определение
- •Связь с термодинамической устойчивостью системы
- •Применение в химииСвязь с химическим потенциалом
- •16. Способы выражения концентрации раствора.
- •17. Понятие об эквиваленте. Закон эквивалентов. Нормальная концентрация. Основное уравнение объемного анализа. Определение эквивалента элемента оксида, соли, кислоты и основания.
- •18. Теория электролитической диссоциации.
- •19. Кислоты, соли, основания. Процессы диссоциации. Основные св-ва.
- •20. Степень диссоциации. Сильные и слабые электролиты.
- •Методы определения
- •Мнимая степень диссоциации
- •21. Ионное произведение воды. Водородный показатель.
- •История
- •Уравнения, связывающие pH и pOh [Вывод значения pH
- •22. Гидролиз солей. Факторы, влияющие на процессы гидролиза солей.
- •2) Факторы, влияющие на степень гидролиза.
- •23. Растворимость. Насыщенные и пересыщенные растворы.
- •Насыщенные и пересыщенные растворы
- •Растворимость веществ
- •Растворимые и нерастворимые вещества
- •Разбавленные и концентрированные растворы
- •24. Произведение растворимости.
- •25.Давление насыщенного пара. Закон Рауля. Определение температуры кипения и кристаллизации раствора. Эбуллиоскопические и криоскопические константы.
- •Первый закон Рауля
- •Второй закон Рауля
- •Понижение температуры кристаллизации растворов
- •Повышение температуры кипения растворов
- •Криоскопическая и эбулиоскопическая константы
- •Растворы электролитов
- •26.Отклонение от законов Рауля для растворов электролитов. Изотонический коэффициент. Отклонения от закона Рауля
- •27. Временная и постоянная жесткость воды. Единицы измерения жесткости. Устранение временной и постоянной жесткости воды. Иониты.
- •2) Единицы измерения
- •3) Методы устранения
- •Органические иониты
- •Неорганические иониты
- •Описание
- •Окисление
- •Восстановление
- •Виды окислительно-восстановительных реакций
- •Примеры Окислительно-восстановительная реакция между водородом и фтором
- •Окисление, восстановление
- •Мнемонические правила
- •29. Типы окислительно-восстановительных реакций. Привести примеры.
- •30. Механизм возникновения электродного потенциала.
- •31. Гальванические элементы. Принцип работы. Эдс элемента.
- •Эксплуатация элементов и батарей
- •32. Гальванический элемент Якоби и Вольта.
- •33. Стандартный (водородный) электрод. Определение стандартного (нормального) электродного потенциала металла.
- •Устройство
- •34. Ряд напряжений металлов и выводы из него.
- •35. Концентрационные гальванические элементы. Уравнение Нернста.
- •Вывод уравнения Нернста
- •36. Электродные процессы на электродах при электролизе. Электролиз раствора соли.
- •Электролиз расплавов солей
- •Электролиз водных растворов электролитов
- •Катодные процессы.
- •Анодные процессы.
- •37. Электролиз водного раствора соли: а) с инертными электродами б) с растворимым анодом.
- •38. Закон Фарадея. Применение процессов электролиза.
- •Первый закон Фарадея
- •Вывод закона Фарадея
- •Второй закон Фарадея
- •39. Виды коррозионных разрушений.
- •40. Классификация коррозионных процессов. Химическая и электрохимическая коррозия.
- •1.1. По виду (геометрическому характеру) коррозионных разрушений на поверхности или в объёме металла.
- •1.2. По механизму реакций взаимодействия металла со средой (химическая и электрохимическая коррозия).
- •1.3. По типу коррозионной среды
- •1.4.По характеру дополнительных воздействии
- •2)Х имическая коррозия
- •Электрохимическая коррозия
- •41. Причины возникновения электрохимической коррозии. Привести примеры.
- •42. Методы защиты металлов от коррозии.
- •43. Методы защиты металлов от коррозии. Анодные и катодные покрытия на металле.
- •44. Электрохимические методы защиты металлов от коррозии.
- •45. Современная формулировка и физический смысл периодического закона д. И. Менделеева.
- •46. Атомная модель. Квантовые числа. Принцип Паули.
- •Модели атомов
- •Строение атомов и принцип Паули
- •47. Электронные формулы. Правило Хунда. Свойства р-элементов.
- •48. Свойства s- и p-элементов. Привести примеры.
- •Опасность и хранение
- •49. Свойства d- и f-элементов. Привести примеры.
- •50. Энергия ионизации. Сродство к электрону. Электроотрицательность.
Понимание энтропии как меры беспорядка
Существует мнение, что мы можем смотреть на Ω и как на меру беспорядка в системе. В определённом смысле это может быть оправдано, потому что мы думаем об «упорядоченных» системах как о системах, имеющих очень малую возможность конфигурирования, а о «беспорядочных» системах как об имеющих очень много возможных состояний. Собственно, это просто переформулированное определение энтропии как числа микросостояний на данное макросостояние.
Рассмотрим, например, распределение молекул идеального газа. В случае идеального газа наиболее вероятным состоянием, соответствующим максимуму энтропии, будет равномерное распределение молекул. При этом реализуется и максимальный «беспорядок», так как при этом будут максимальные возможности конфигурирования.
Границы применимости понимания энтропии как меры беспорядка
Подобное определение беспорядка термодинамической системы как количества возможностей конфигурирования системы фактически дословно соответствует определению энтропии как числа микросостояний на данное макросостояние. Проблемы начинаются в двух случаях:
• когда начинают смешивать различные понимания беспорядка, и энтропия становится мерой беспорядка вообще;
•когда понятие энтропии применяется для систем, не являющихся термодинамическими.
В обоих этих случаях применение понятия термодинамической энтропии совершенно неправомерно.Рассмотрим оба пункта более подробно.Рассмотрим пример термодинамической системы — распределение молекул в поле тяготения. В этом случае наиболее вероятным распределением молекул будет распределение согласно барометрической формуле Больцмана. Другой пример — учёт электромагнитных сил взаимодействия между ионами. В этом случае наиболее вероятным состоянием, соответствующим максимуму энтропии, будет упорядоченное кристаллическое состояние, а совсем не «хаос». (Термин «хаос» здесь понимается в смысле беспорядка — в наивном смысле. К хаосу в математическом смысле как сильно неустойчивой нелинейной системе это не имеет отношения, конечно.)
Рассмотрим случай с кристаллической решёткой более подробно. Кристаллическая решётка может быть и в равновесном, и в неравновесном состоянии, как и любая термодинамическая система. Скажем, возьмём следующую модель — совокупность взаимодействующих осцилляторов. Рассмотрим некоторое неравновесное состояние: все осцилляторы имеют одинаковое отклонение от положения равновесия. С течением времени эта система перейдёт в состояние ТД равновесия, в котором отклонения (в каждый момент времени) будут подчинены некоторому распределению типа Максвелла (только это распределение будет для отклонений, и оно будет зависеть от типа взаимодействия осцилляторов). В таком случае максимум энтропии будет действительно реализовывать максимум возможностей конфигурирования, то есть — беспорядок согласно вышеуказанному определению. Но данный «беспорядок» вовсе не соответствует «беспорядку» в каком-либо другом понимании, например, информационному. Такая же ситуация возникает и в примере с кристаллизацией переохлаждённой жидкости, в которой образование структур из «хаотичной» жидкости идёт параллельно с увеличением энтропии.
Это неверное понимание энтропии появилось во время развития теории информации, в связи с парадоксом термодинамики, связанным с мысленным экспериментом т. н. «демона Максвелла». Суть парадокса заключалась в том, что рассматривалось два сосуда с разными температурами, соединённых узкой трубкой с затворками, которыми управлял т. н. «демон». «Демон» мог измерять скорость отдельных летящих молекул, и т.о. избирательно пропускать более быстрые в сосуд с высокой температурой, а более медленные — в сосуд с низкой. Из этого мысленного эксперимента вытекало кажущееся противоречие со вторым началом термодинамики.
Парадокс может быть разрешён при помощи теории информации. Для измерения скорости молекулы «демон» должен был бы получить информацию о её скорости. Но всякое получение информации — материальный процесс, сопровождающийся возрастанием энтропии. Количественный анализ[2] показал, что приращение энтропии при измерении превосходит по абсолютной величине уменьшение энтропии, вызванное перераспределением молекул «демоном».